
Algorithms

Carl Turner

3rd July 2013

Abstract

This is a set of course notes from Algorithms, a course taught in Lent Term 2010 at the Centre

for Mathematical Sciences, Cambridge. The course was delivered by Sean Lip, Freddie Manners

and Ludwig Schmidt. The course homepage is http://www.srcf.ucam.org/algorithms/ - contact

details may be easily found on this page. You can contact the author of this set of notes at

courses@suchideas.com; the notes may be found at SuchIdeas.com.

The course materials are licensed under a permissive Creative Commons license:

Attribution-NonCommercial-ShareAlike 3.0 Unported (see the CC website)

Contents

List of Lectures 3

1 Basics 4

1.1 Recursion . 11

1.2 Dynamic Programming . 21

2 Graph Algorithms 34

2.1 Search Algorithms . 35

2.2 Shortest Path Algorithms . 42

2.3 Minimum Spanning Trees . 50

3 Greedy Algorithms 54

4 Matchings and Network Flow 58

4.1 The Stable Marriage Problem . 58

4.2 Maximum Matching in Bipartite Graphs . 62

4.3 Maximum Flow . 67

4.4 Minimum-Cost Flow . 80

1

http://www.srcf.ucam.org/algorithms/
mailto:courses@suchideas.com
http://suchideas.com/courses/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Introduction

The �eld of algorithms is a fascinating area of study, and a relatively young one at that. Many people

�nd some of the ideas that come from theoretical computer science to be intriguing, and more than

once an individual's interest in a particular problem has led to the discovery of a totally new technique.

In fact, new discoveries are still frequent, and there is much we do not know, including some issues we

will touch upon here.

This course is meant to give a broad outline of the subject, placing particular emphasis on the

techniques used in designing algorithms. The format is largely problem-driven: we pick a particular

problem, then attempt to solve it, or more often a generalized version thereof. There are exercises in

the material which should de�nitely attempt if you want to really come to understand the material

thoroughly.

You will likely �nd the course homepage very useful if you are keen to learn more about this �eld.

There are lots of resources there which you can use to accompany these notes, or indeed replace them

- the videos of the lecture course can be found there. Di�erent people work in di�erent ways: you may

like to watch the lectures, then read through the notes afterwards to consolidate the information, or

you may like to watch the lectures for the topics you feel less con�dent about. Besides the lectures, you

can also �nd example sheets (the Cambridge name for problem sheets) with problems of a wide range

of di�culty, and several extension challenges that were given for students. You should attempt the

example sheets after covering the relevant material. You may also like to have a go at the extension

exercises; in many cases example solutions from students are given, if you would like to see how other

people go about these problems. There is advice on which questions to attempt when at the end of

the relevant lectures, as well as above the lecture videos.

Thanks go to the chief lecturer Sean Lip for his commitment to open education, in particular

working with me to make these notes good quality and allowing me to distribute them freely, and for

making the proofreading (relatively) painless; also, to Matvey Soloviev for some of the diagrams in

these notes.

2

http://algorithms.soc.srcf.net/
http://www.damtp.cam.ac.uk/people/s.z.w.lip/
http://people.ds.cam.ac.uk/ms900/

List of Lectures

1 Introduction . 4

2 Recursion . 10

3 Recursion Continued . 16

4 Dynamic Programming . 21

5 Dynamic Programming Continued . 26

Graph Terminology (Handout) . 32

6 Graph Algorithms - Searching . 34

7 Graph Algorithms - Searching Continued . 38

8 Graph Algorithms - Shortest Paths in Weighted Graphs . 42

Dijkstra with Heaps (Handout) . 47

9 Graph Algorithms - Minimum Spanning Trees . 50

10 Greedy Algorithms . 54

11 Stable Marriage Problem . 58

12 Maximum Bipartite Matching . 62

13 Maximum Flow . 67

14 More E�cient Maximum Flow Algorithms . 72

15 Applications of Maximum Flow . 76

16 Minimum-Cost Flow . 80

3

Lecture 1: Introduction

1 Basics

We think of an algorithm as a �nite sequence of instructions that solves a problem. Often, it is given

some input and has to produce an output.

Example. Given a continuous function F : [0, 1] → R, with F (0) < 0 and F (1) > 0, �nd an

x ∈ [0, 1] such that F (x) = 0, with an error at most 10−9.

Remark. When we ask for an answer with error at most ε, what we mean is that we want to �nd some

x nearby to a true answer. So we need there to be x0 with F (x0) = 0 and |x− x0| < ε. We can think

of this ε = 10−9 as the desired precision of the answer.

Note that this is not the same as wanting some x with |F (x)− 0| ≤ 10−9.

Idea: One very useful recurring theme in computer science is the idea of a binary search, or in a

continuous situation like this, bisection.

The key idea is that we want to eliminate as much of the interval as possible at each step. So a

sensible approach to solving this would be simply to look in the middle of the interval, that is x = 0.5,

and see which of the following three cases arises:

• F (0.5) > 0 - then we can look more closely at F on the smaller interval [0, 0.5], because F (0) < 0

and F (0.5) > 0;

• F (0.5) < 0 - then we can look more closely at F on [0.5, 1];

• F (0.5) = 0 - then we are done.

But in the �rst two cases, we have just reduced the problem to itself but with di�erent input, so we

can start again. This gives rise to the following algorithm:

Algorithm 1 Root-�nding by bisection
L := 0

R := 1

WHILE (R-L > 10−9)

{

M := L+R
2

IF (F(M) = 0) THEN

RETURN M

ELSE IF (F(M) > 0)

SET R := M

ELSE

SET L := M

}

RETURN L

4

There are a few things worth noting about this way of writing down algorithms, especially if the

reader is not familiar with so-called pseudocode.

(i) The notation := corresponds to an assignment, so L := 0 sets the variable L in computer memory

to the value 0. This is because = is reserved for testing for equality.

(ii) The RETURN statement just states that whatever follows the keyword should be given as the

answer.

(iii) The WHILE loop simply runs the code contained in the braces, { }, while the condition stated

holds.

Note that when we eventually return L, this is fairly arbitrary, because we know1 there is a root x0 in

[L,R], so the distance from any point in this interval to x0 is at most 10−9.

Remark. We should think about the speed of this algorithm - we are requiring quite a high level

of precision here, so might this not take a long time? The answer is actually no; we can see this

by observing that the size of the search interval halves at each iteration. So we need at most say

log2
1

10−9 u 30 iterations to reach this precision. When we consider that a typical computer will carry

out 108 to 109 basic operations2 per second, we see that this is very fast indeed.

Problem 1.1. Given N pairs (vi, wi) representing the values and weights of books, pick a set S of 6

books such that the goodness

g (S) =

∑
i∈S vi∑
i∈S wi

is maximized.

Assume N = 500 and vi and wi are integers in the range [1, 10000].

Note that in this problem, we are asked for a way of locating an optimal subset of a larger set, a

very common type of optimization problem. There is a standard way of obtaining an answer to such

a problem, referred to as the brute force approach (for obvious reasons!), as follows:

Solution 1 (Brute force). Try all
(

500
6

)
u 2× 1013 sets, and select the one with the best goodness.

This has the merit of obviously being a correct answer; but equally obviously there is a serious

problem; even if we assume the computer can formulate a set and test its goodness in a single step,

we are looking at a runtime of maybe 104 seconds, which is around 3 hours. In some sense, we want a

faster solution.

However, it is not entirely clear how we should go about measuring objectively the speed of an

algorithm. There are several problems, one of the most problematic being that we cannot currently

compare algorithms independently of the computers they run on. In fact, we would ideally like a

measure of the speed which was independent of the implementation, operating system and so on.

But �rst, we must decide how to get an objective measure of speed.

1Formally, this is a consequence of the Intermediate Value Theorem.
2These are the instructions in assembly languages, which typically include instructions like addition, multiplica-

tion, assignment and comparison tests. Programs can easily have hundreds of thousands or millions of these low-level
instructions.

5

Idea: Consider the number of basic operations performed.

Observe that this is necessarily dependent on input size. In fact, the dependence on input size gives

a natural way of thinking about how well-written an algorithm is - a bad algorithm `gets slower more

quickly'. This motivates the following key de�nition3:

De�nition. The time complexity (often, we just say complexity) of an algorithm is a function

f (n) that gives the number of elementary operations needed to process an input of size n.

By the standards of this de�nition, what we are interested in is not the behaviour of f for any

particular values of n, or indeed for small n - instead, we want to know the type of behaviour f exhibits

as n grows (its asymptotic behaviour).

A very useful notation for talking about behaviour of functions in the limit of large n is usually

called big O notation, de�ned by the following:

De�nition. We write f (n) = O (g (n)) if there are constants C and n0 such that

f (n) ≤ Cg (n) ∀n > n0

We say f is `big O' of g.

Remark. A more abstract way of viewing de�nitions such as this arises from thinking of the statement

`f is big O of g' as really meaning `f is in the class of functions dominated by g'. In this formalism,

you would write f ∈ O (g) instead of f = O (g). Then, for instance, O
(
n2
)
⊂ O

(
n3
)
. One reason this

is better is the asymmetry of writing something like n+O
(
n2
)

= O
(
n3
)
. More rigorously, one would

write n+O
(
n2
)
⊂ O

(
n3
)
where the left-hand side is de�ned as

{
n 7→ n+ f (n) : f ∈ O

(
n2
)}
.

This is simply saying that f is bounded above by some constant multiple of g for all su�ciently

large n, which corresponds very closely to what we want to know about the behaviour of some time

complexity f - we do not, in theory, care much about the constant factor (since this in general will

depend on the speci�c computer, language, libraries used, and so on) or about small cases.

Of course, in practice, these do matter, since some algorithms, whilst having better asymptotic

performance, have such a large constant factor that they are impractical for most imaginable input;

and similarly, some algorithms with worse asymptotic performance will be used in preference because

of simplicity, or smaller constant factors. (An example of this is the widespread simplex algorithm for

solving linear programming problems, which has a worst-case time complexity which is exponential,

but is often used in preference to polynomial algorithms - though this is partly due to the fact that

the simplex algorithm only runs in exponential time on a very small subset of problems.)

3The de�nitions of ideas from complexity analysis in this course are intentionally fairly loose, being included so
that we can develop a practical understanding of the comparative speed of di�erent ways of solving the same problem.
Formally, we should de�ne `elementary operations', and the size of the input. (The latter is actually usually viewed in
terms of the number of bits of input, but we shall not be careful about ensuring this is actually what we are using.)

6

Example. We can use this notation to greatly simplify expressions of complexity; for example

3n2 + 100n+ 5 = O
(
3n2
)

= O
(
n2
)

Note that this loses a lot of information, but allows us to make crude (but in practice, very

useful) comparisons of the e�ciency of algorithms.

Exercise 1.2. Find the values of f (n) = log n, n, n log n, n2, n3, 2n, n! for each of n = 10, 102, · · · , 106.

Now �nd the largest n? for which f (n?) ≤ 1010.

This exercise (particularly the second part) shows that the �rst 5 complexities grow much more

slowly than the last two (for which we cannot go beyond double �gures in n? before exceeding the 1010

limit). This is borne out even more strikingly for larger upper bounds, where one can also see that any

polynomial power nk is eventually massively exceeded by the exponential and factorial expressions4.

De�nition. An algorithm is e�cient if f (n) = O (p (n)) for some polynomial p (n) - the algorithm

is said to run in polynomial time.

In this course, we will almost always consider the worst-case time complexity - that is, we always

use a function f (n) which gives the maximum possible number of elementary operations needed over

all inputs of size n.

Remark. Several other types of analysis are possible, including average-case time complexity (the

expected time taken for a randomly generated legal input of size n) and something more sophisticated

called amortized analysis, which gives a guaranteed worst running time per operation over a worst-case

sequence of operations - as a result, is it only useful in problems with some persistent state (typically

data structures like binary trees) where a particular call may take a long time, but on average later

calls will be more rapid, an e�ect which we would like to see re�ected in the complexity analysis.

Now note that applying these ideas to our brute-force solution above, and treating N as the only

variable, we see (
N

6

)
=
N (N − 1) · · · (N − 5)

6!
= O

(
N6
)

so technically our solution is e�cient; however, for an input as large as N = 500, we have already seen

that this is really quite slow.

(We could let the number of books B we want be a variable too; then the algorithm would be

O
(

1
B!N

B
)
which can be very bad for some combinations of N,B - for example, if we always take

N = 2B, this is considerably worse than 2B .)

So the question is - is there a considerably faster solution? Here is one idea:

Solution 2? Find vi
wi

for each book, and choose the books with the six largest goodness ratios.

4One way of thinking about this is that ex = 1+x+ 1
2
x2 + 1

3!
x3 + · · ·+ 1

n!
xn + · · · , so all polynomials are eventually

exceeded by some term in an exponential series.

7

Complexity :

• Calculating vi/wi for each book, O (N)

• Picking the best six books5, O (N)

• Total, O (N)

So this certainly seems to be a much faster algorithm - in fact, it is blindingly fast - but there is one

small problem. It does not actually work!

Example. For a counterexample, consider the small case for N = 3 where we want to pick the

best 2 books, and we have

(vi, wi) = (1, 1)→ 1

(3, 1)→ 3

(4, 3)→ 4

3

Then our suggested solution chooses (3, 1) and (4, 3), giving a goodness of 7/4. But taking (1, 1)

and (3, 1) gives 4/2 = 2 > 7/4 so the given solution is suboptimal. (It is easy to extend this to the

(500, 6) case - try it!)

Exercise 1.3. Can you come up with a correct algorithm for solving this problem?

The reader should attempt this exercise before continuing, since a correct solution is given at the

beginning of the next lecture.

The algorithms given below were suggested by students taking the course:

Exercise 1.4. All of the following algorithms are e�cient, but which are correct? Give a proof or

counterexample for each algorithm.

(i) The Mohrmann-Maas algorithm: Start with any seven books. Compute all goodness values for

each of the seven possible sets of 6 out of the 7, and �nd the best set. The one book which is not

in that set is cast out entirely and never seen again. Repeat for each of the other 493 books (by

choosing one, adding it to your current set to get a 7-set, and casting out the book that doesn't

contribute to the set with maximum goodness). The set of 6 left at the end will be the best one.

(ii) Zhu's algorithm: Find the goodness of each book. Pick the best one. Then �nd the combined

goodness of this best book and another book. Pick the second book which yields the highest

combined goodness. Then �nd the combined goodness of these two books and another book.

And so on, until you get to six books.

(iii) Bell's algorithm: Find the sum of all values and the sum of all weights for all N books. Try

removing each book in turn and see which set of N − 1 books has the highest goodness. Remove

the book not in this set. Repeat until there are only six books left.

5We can do this by running through the list once, and keeping a list of the `best 6 so far', a standard technique for
doing this - alternatively, we could just sort the list (which we can do slightly more slowly in O (N logN) as we shall see
later - 1.7) and pick the �rst 6 items.

8

You should be able to attempt questions 1 to 4 on Example Sheet 1 after this lecture.

You might also like to try the Books Problem challenge, as well as the 'Solutions' to the

Books Problem challenge as suggested in the last two exercises. If you are interested in

programming, you can also attempt Problem 1-1 on ACOS.

9

http://algorithms.soc.srcf.net/examples/algorithms_sheet_1.pdf
http://algorithms.soc.srcf.net/challenges/challenge1.html
http://algorithms.soc.srcf.net/challenges/challenge2.html
http://algorithms.soc.srcf.net/challenges/challenge2.html
http://algorithms.soc.srcf.net/acos/index.html

Lecture 2: Recursion

Before we continue on to the next fundamental topic in this course in section 1.1, we will consider

a (correct!) solution to the books problem from the previous lecture.

Idea: It is di�cult to consider many di�erent combinations of books and their goodnesses, because we

cannot use information about individual books to e�ciently deduce information about all of the sets

they make. But if we can rephrase the problem to ask about some condition on the existence of a set

of su�ciently high goodness which we can check rapidly, then maybe we can perform a binary search

to �nd the answer.

Solution 3. Consider the related decision problem P (λ), which may be stated as

Given a threshold value λ, can I achieve g (S) ≥ λ?

The answer is true if and only if there is some set S with∑
i∈S

(vi − λwi) ≥ 0

So we just need to �nd the 6 books with the largest vi − λwi and check if these have a sum at

least 0; this then tells us precisely the result of P (λ). Complexity : O (N logN) if we sort, or

O (N) if we use a running bu�er as before, for small �xed target numbers of books6.

This is the algorithm for determining P (λ), and the complexity of this for one speci�c λ.

Then we can binary search on λ, as P (λ) is equivalent to g? ≥ λ. Initially, we can take

g? ∈ [0, 60000/6] = [0, 10000] (which actually would allow for vi = 0). Now, how �ne must we

make our search, to guarantee we obtain a unique result? Well, consider two �tnesses, a/b and

c/d. Their di�erence is
a

b
− c

d
=
ad− bc
bd

and we know b, d ≤ 6 · 10000.

So we can see that the possible values of g? are at least 1
600002 apart, which gives us the terminating

condition. In turn, this gives an upper bound on the runtime of the binary search: we will need,

for the given numbers, around

log2

(
10000

(1/60000)
2

)
u 46

iterations. Complexity : O (46N logN) = O (N logN).

Finally, when g? has been determined, running P (g?) once gives us the desired set of books.

Remark. The complexity analysis is not entirely complete; the constant factor clearly depends signi�-

cantly on the ranges of the values and weights and the number of books required. If we let values be

6Whilst running bu�ers are in general O (N) for a �xed number of target books, the hidden constant factor grows
fairly raipdly when we increase the number of items to be chosen. (You may like to check this.) You may be interested in
http://en.wikipedia.org/wiki/Selection_algorithms#Selecting_k_smallest_or_largest_elements, which describes vari-
ous algorithms for solving this problem with better complexity than sorting the whole list or keeping a running bu�er.

10

http://en.wikipedia.org/wiki/Selection_algorithms#Selecting_k_smallest_or_largest_elements

integers vi ∈ [1, V] and we let weights be integers wi ∈ [1,W], and look for B books, then we have

complexity

O

(
log2

[
V

(1/BW)
2

]
N logN

)
= O

(
N logN

[
log
(
V B2W 2

)])
= O (N logN log (V BW))

where we have dropped the base on the logarithm. (Why is this legitimate?)

This is clearly an e�cient solution from all points of view. The only things we might be worried

about are

(i) the dependence of the running time on V and W ;

(ii) the need for vi and wi to be integers.

The �rst point is a common feature of approaches like this, where we use mathematical properties

of the problem to come up with a clever solution - we introduce new dependencies. This actually

is reasonably acceptable in most physical or real-world applications, since there are upper bounds

imposed e�ectively by common sense. Similarly, we can actually use rational vi and wi if we multiply

through by lowest common denominators (and there is unlikely to be a situation where we need true

irrational values of weights) - the problem here is that V and W are similarly increased. Fortunately,

since the dependence on V and W is only logarithmic, this is not very problematic.

In general, this solution is actually very fast for the scale of problem we were asked to solve, and

fairly easy to implement. It gives a good example of the essentially two-stage process of algorithm

analysis:

(i) Prove correctness.

(ii) Evaluate complexity.

1.1 Recursion

The `books' example shows how large, di�cult problems can be solved e�ciently by breaking them

into subproblems of a known or at least simpler nature - in the above case, a binary search problem

(which forms the structure of the solution) and the main subproblem (answering the decision problem

P (λ)). In this section, we look at a di�erent way of reducing problems.

Problem 1.5 (The Tower of Hanoi). In this well-known problem, we are given three pegs, A, B and

C, and N discs stacked in order of size on peg A. For example, with N = 3 we begin with the layout

below. The task is to move all of the discs from A to C, one at a time, and respecting the rule that

larger discs may not be placed on top of smaller discs.

11

'

&

$

%A

1

2

3

B C

Clearly, at some point we need to get the largest disc from the bottom of A onto the bottom of C.

But to do this, we have to get rid of all of the other smaller discs �rst.

Idea: Solve the problem recursively, by moving everything except the largest disc from A to B; then

moving the largest disc from A to C; and �nally moving the remaining discs from B to C.

The �rst and third steps here are e�ectively solving the problem for N − 1 discs. This leads to the

following pseudocode algorithm:

Algorithm 2 Solve the Tower of Hanoi problem

SolveHanoi(N, start, end):

IF (N > 1) THEN

Let `other' be the peg other than `start' and `end'

SolveHanoi(N-1, start, other)

PRINT Move disc `N' from `start' to `end'

SolveHanoi(N-1, other, end)

ELSE

PRINT Move disc 1 from `start' to `end'

Remark.

(i) The PRINT command just outputs the text after it to the screen, with 'N', 'start' and 'end'

replaced by their respective values.

(ii) To solve the problem, we call SolveHanoi(N, A, C).

We can easily check that this is a valid answer by noting that

• we only move discs when we know there is no disc on top of them;

• we only move disc N onto a peg when all the smaller discs are out of the way.

This shows clearly the characteristic structure of a so-called recursive solution. We have:

(i) a function called from within its own body, the recursive call ; and

(ii) a terminating condition or base case, which prevents an in�nite descent.

12

To calculate the time complexity, it is convenient to de�ne TN to be the number of moves made by this

algorithm; clearly7 the only real work done is in the moves (or rather, the print instructions) which

take O (1) , so the algorithm is O (TN).

Now T1 = 1, and TN = 2TN−1 + 1, and solving the recurrence relation gives

TN = 2N − 1

and hence the algorithm is exponential with base 2 - that is, the time complexity is O
(
2N
)
.

This may not be fast, but it is in fact optimal, as may be shown:

Exercise 1.6. Show that any solution to the Tower of Hanoi problem takes at least 2N − 1 moves.

Hint : Working inductively, you can show that the number of required moves, RN , obeys the same

recurrence as TN .

We now move on to look at a more complicated problem which admits an e�cient recursive solution.

Problem 1.7. Given N numbers, sort them quickly.

For a benchmark, we consider the naïve solution given by implementing what a human would

probably usually do:

Solution 1. Find the smallest item in the list, append it to the new list, and repeat. Complexity : The

obvious implementation is O
(
N2
)
, as may be seen by creating the list where the smallest item

is always in the `last place the algorithm looks'.

A cleverer approach creates a recursive solution by noting that sorting a smaller list is `easier' than

sorting a longer list.

Solution 2 (Merge sort). If we were to halve the list, and sort the two halves recursively, then we would

be left with the simpler problem of combining two sorted lists into one.

The base case is a list of 0 or 1 elements, as in either case the list is already sorted.

Schematically, leaving aside the subproblem of working out how to Merge two lists, we have the

following algorithm (using |L| to denote the size of a list):

7Actually, in implementation, a function call - like the two recursive calls here - involves some overhead. We can
avoid this complication by assuming such an overhead takes constant time, and then noting that for every move, there
are at most two recursive calls, so the overhead is absorbed into the constant factor.

13

Algorithm 3 Merge sort

MergeSort(L):

IF (|L| > 1) THEN

L1 := left half of L

L2 := right half of L

S1 := MergeSort(L1)
S2 := MergeSort(L2)
A := Merge(S1, S2)

RETURN A

ELSE

RETURN L

Again, the characteristic structure of a recursive solution is clearly shown by this algorithm. The

only tasks remaining are to write Merge and work out the overall complexity, since this is clearly a

correct solution.

Merge is actually fairly straightforward - at any given point, we either add the next element from

the �rst list or the second list, so all we need to do is to step through the lists simultaneously:

Algorithm 4 Merge sort, Merge sub-problem

Merge(L1, L2):

M := empty list

WHILE |L1| 6= 0 or |L2| 6= 0

X := smaller of first elements of L1 and L2 (L1's if they are equal)

Remove X from its list

Append X to M

RETURN M

Remark. In implementation, we would probably not actually remove elements from the lists to be

merged, since this might be expensive; we would just keep variables recording how far through each

list we have reached so far. However, we cannot easily do Merge actually in place (without a third list,

M) so for now we shall settle for the above algorithm.

Complexity

The interesting part of the merge-sort problem is how to go about calculating its complexity. The

usual approach is to begin with an analysis of any subroutines used - in our case, this is the Merge

procedure.

Merge(·,·) does a constant amount of work per list element, so the time complexity isO (|L1|+ |L2|).
Now let MergeSort takes time TN to sort a list of length N . Then

TN = TdN/2e + TbN/2c + cN

for some constant c, since the procedure is called recursively with lists of size as given (roughly halving

the input size) and some O (N) work is done.

14

As this suggests, this will become �ddly to analyze precisely when N is not a multiple of 2, so here

we will assume N = 2k for some k. It is reasonably clear that actually the algorithm will not perform

much worse than indicated (in terms of complexity) in the other cases, but for a fuller analysis the

reader is directed to the book Introductions to Algorithms8 or any of the many places online where

the general case is considered.

In this simpler case, however, we have simply TN = 2TN/2 + cN . This scheme can be solved using a

so-called recursion tree. The idea is that we calculate the time spent in total at each level of recursion,

and add them up afterwards:'

&

$

%

cN

cN2

cN22

...

cN
2k cN

2k

...

cN22

...
...

cN2

cN22

...
...

cN22

...
...

cN
2k cN

2k = cN

...

cN

cN

cN

Total : cN · log2N

+

+ ++

+ +· · ·

=

=

=

+ +

· · ·

The �nal line comes from noting there are log2N levels in the tree, since then the �nal nodes all

have N/2k = 1 item.

Hence we have the result

TN = O (N logN)

Note that for large N we have N logN � N2 so that this is a signi�cant improvement on the

simple algorithm given in the �rst solution.

In fact, it is not very di�cult to show this is precisely the best complexity that can be achieved in

the general case of a sort where the keys to be compared can take on continuous values.

Exercise 1.8. Show that any sorting algorithm takes at least O (N logN) time in the worst case.

Hint : Every time we make a comparison, we pick a branch of a binary tree (called the decision tree)

- how many leaves must the tree have? (See the handout later in the course for de�nitions relating to

trees.)

Remark. By contrast, when the entries to be sorted can only take on a (small) �nite set of values,

there are actually more e�cient solutions - the curious reader can look up counting sort and radix sort.

Also, bucket sort (and more generally distribution sort) might be of interest.

In the next lecture, we will generalize the recursion tree methods to a useful theorem that will

make these calculations less tedious in the future.

8T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Introduction to Algorithms. MIT Press 2009.

15

Lecture 3: Recursion Continued

Many recursive algorithms are based on the divide and conquer technique used in merge sort, and

as a result have associated recurrences of the form

TN = aTN/b + f (N)

where a and b are constants. In merge-sort, a = 2, b = 2 and f (N) = cN .

Whenever af (N/b) ∝ f (N) we have the following theorem:

Theorem 1.9 (The Master Theorem). Suppose TN = aTN/b +f (N) and af (N/b) = kf (N) for some

constants a, b, k. Then

(i) if k < 1, TN = O (f (N))

(ii) if k = 1, TN = O (f (N) logN)

(iii) if k > 1, TN = O
(
N logb a

)
Remark. Note this statement of the Master Theorem gives only upper bounds - although you can see

that our analysis below allows us to calculate TN explicitly (where N is a multiple of b) - and assumes

f has a very particular form. It is actually possible to give accompanying lower bounds, even with

weaker restrictions on f . The Wikipedia article at http://en.wikipedia.org/wiki/Master_theorem may

be of interest.

To prove this, we basically imagine drawing a general version of the recursion tree from the previous

lecture.

Proof. From the recursion tree, once again assuming that N is a power of b, we see

TN = f (N) + af (N/b) + a2f (N/b2) + · · ·+ alogb Nf (1)

= f (N)
[
1 + k + k2 + · · ·+ klogb a

]
Then we can simply analyze this geometric series to �nd the answer:

(i) if k < 1, then the series is O (1) - as may be seen by the closed form of the sum - so

TN = O (f (N)).

(ii) if k = 1, then all terms in the series are equal, and there are logbN of them, so TN =

O (f (N) logN).

(iii) if k > 1, then the sum is dominated by its largest term, so

TN = O
(
f (N) klogb N

)
= O

(
alogb Nf (1)

)
= O

(
alogb N

)
= O

(
N logb a

)
16

http://en.wikipedia.org/wiki/Master_theorem

This can then be applied to easily deduce a few results we already know:

Example (Merge sort). TN = 2TN/2 + cN .

We have a = 2, b = 2 and f (N) = cN . Since 2c · N2 = cN we have k = 1, and then

TN = O (N logN)

This followed directly from the second case.

Example (Binary search). TN = TN/2 + c.

This time, a = 1 and b = 2, whilst f (N) = c. Hence ac = kc, so k = 1. Then

TN = O (logN)

This was another instance of the second case. Finally, we see an application of the third:

Example (Towers of Hanoi). TN = 2TN−1 + 1.

This is not initially in the desired form, because the recurrence is de�ned by a linear change.

We can, however, still apply the master theorem with a suitable transformation.

If we let N = logbM , then we can de�ne

UM = Tlogb M

= 2Tlogb
M/b + 1

= 2UM/b + 1

Here a = 2 and we have some arbitrary b. Hence a · 1 = k · 1 implies k = 2, and

UM = O
(
M logb 2

)
which implies

TN = UM

= O
(
bN logb 2

)
= O

(
2N
)

As a �nal note on recursion, we look at another classic example.

17

Problem 1.10. Write a program to play Noughts and Crosses (Tic-Tac-Toe). Your program should

take as input a (legal) position, then output the outcome of the game and an optimal move, if applicable.

Assume both players play perfectly.

We are asked to classify a fairly reasonable number of possible boards - fewer than 39 = 19683 as

each square can be in at most 3 states: winning, losing or drawing9.

A con�guration is losing if all moves from it lead to winning positions (for the other player), and

it is winning if some move from it leads to a losing position (for the other player). Otherwise, it is a

draw.

Remark. One way to view this is as a game tree, where the root of the tree is a blank board, and every

node has child nodes for every possible move after it. We are then exploring various branches of the

tree, using what is called a minimax algorithm.

This leads to the following recursive solution:

Solution. Given a board and the player whose turn it is (say O), check all possible next moves for O

recursively, to see if they are wins or losses or draws for X. Then apply the above rules.

This can be implemented by something like the algorithm below, which de�nes a function SolveNC

which takes a board position and the symbol of the current player, and returns a pair with either WIN,

LOSE or DRAW in the �rst place, and the best cell to choose in the second place.

You may like to try to come up with the algorithm yourself by following the same two key steps as

before:

• Identify what recursive calls need to be made.

• Identify the base cases.

A typical solution is provided below. We write S for the symbol of the player whose turn it is, and S

for the other player's symbol.

Algorithm 5 Solving Noughts and Crosses

SolveNC(position P, symbol S):

IF (There is a row of three S̄)

RETURN (LOSE, -)

IF (There is no empty cell)

RETURN (DRAW, -)

(bestStatus, bestMove) := (LOSE, first empty cell in P)

FOR empty cell C in P

Q := P with cell C filled with S

(status, move) := SolveNC(Q, S̄)

IF (status = LOSE)

RETURN (WIN, C)

IF (status = DRAW)

(bestStatus, bestMove) := (status, move)

RETURN (bestStatus, bestMove)

9We are classifying states from the perspective of whichever player is to move next - so if O is guaranteed a win, and
it is X's turn, then the board is in a losing state.

18

Remark. When the command RETURN is made, the assumption is that execution stops there. This

avoids wrapping large amounts of code in nested ELSE clauses.

This algorithm is more complicated than the previous examples for two main reasons. Firstly, it

has two base cases. Secondly, it iterates over some variable number of recursive calls.

The basic idea, however, is still the same, and it is quite easy to see how the algorithm re�ects the

earlier description of it.

However, there is a problem with this algorithm - namely ine�ciency due to redundancy. The

algorithm will examine (given an empty board) something on the order of 9! = 362880, which is over

ten times larger than 39, because it will examine the same state repeatedly if it arrives at it from a

di�erent sequence of moves. For example, the possibilities for the right-hand con�guration here are

explored at least twice:

X −→ X

O

−→

O

X

O

−→

X O

X

O

X

−→

X

O

−→

X

X

O

−→

X O

X

O

The obvious solution to this problem is the key to e�cient recursion in many problems:

Memoization. Store the results of recursive calls so that if the same call if made again, we just look it

up and return it straight away.

Schematically, this would amount to de�ning a table (two-dimensional array) MEMO[P][S] contain-

ing (result, move) pairs. By default, let MEMO[P][S] have the value NULL where NULL is a value

indicating that the variable has not yet been assigned a value. We would end up having something

like the following:

Algorithm 6 Solving Noughts and Crosses with memoization

SolveNCMemoized(position P, symbol S):

IF (MEMO[P][S] = (NULL, NULL))

MEMO[P][S] := SolveNC(P, S)

RETURN MEMO[P][S]

SolveNC(P, S):

See previous solution

Remark. In this case, we could actually further reduce runtime by taking advantage of the inherent

symmetry of the board. We might do this by de�ning a canonical version of the board, so that we

always rotate/re�ect the board to some obey some standard rules before looking it up in MEMO and

then rotate/re�ect the board back to return the correct best cell. One example of such a rule would be

- denoting the cells by E, X and O according to whether they are empty or have a symbol in - to write

19

the board as a string of nine characters, so that the above �nal state would be XEOEXEEEO ; then we

could rotate and re�ect the board to get this string into the earliest possible position alphabetically

(lexicographically), and work with that board instead.

One perhaps less obvious symmetry arises from the fact that the outcome and best move for O

given a board position P is the same as the outcome and best move for X given P̄ (which is P with

the X and O characters swapped). This allows us to just store a one-dimensional MEMO[P] array by

always assuming that it is, say, X 's turn, inverting the board if necessary.

Exercise 1.11. Improve the memoized noughts and crosses algorithm as follows:

(i) Devise a routine that checks whether a board is a valid position, and determines which player's

turn it is. (Assume one particular player always starts.)

(ii) Modify the solution algorithm to take advantage of the rotational, re�ective, and player-swapping

symmetries.

20

Lecture 4: Dynamic Programming

The idea of memoization that we saw at the end of the previous lecture actually leads to another

way of solving problems with some naturally recursive solution - we could build up the memoization

table iteratively, �lling it in cell by cell according to the recursive rule, and then reading o� the �nal

answer. We introduce this idea, called dynamic programming, or DP for short, using an example.

1.2 Dynamic Programming

Problem 1.12. Given N coins with positive integer values a1, · · · , aN , can we �nd a subset with total

value K? If so, what is the minimum number of coins needed, and what is an example of a minimal

set (that is, one with the minimum number of coins)?

As ever, we have a simple brute-force solution:

Solution 1. Try all 2N subsets. This is clearly impractical for large values of N .

The dynamic programming solution relies on the following observation:

Idea: We either use or do not use the Nth coin. Therefore, we can solve the problem (N,K) (referring

to the problem of using a1, · · · , aN to make a total K) if and only if we can solve at least one of

(N − 1,K) and (N − 1,K − aN).

This leads to the idea of de�ning a Boolean10 array, C[i][j], indicating whether we can make

the sum j using just the �rst i coins a1, · · · , ai. For now, we will concentrate on the �rst part of the

problem, answering the yes/no question about the value of C[N][K].

Solution 2. We then have the recurrence relation

C[i][j] = 1 ⇐⇒ C[i-1][j-ai] = 1 or C[i-1][j] = 1

This has an obvious base case

C[0][j] = 1 ⇐⇒ j = 0

Here, C[N][K] can be calculated `top-down' with recursion and memoization as in previous lectures:

Exercise 1.13. Write down a recursive algorithm to calculate C[N][K].

Alternatively, we can do this `bottom-up' by calculating answers in order of increasing i. This is

then an iterative solution known as dynamic programming.

It would be implemented by something like the following algorithm (note that we are using the

standard assumption that arrays have indices beginning at 0).

10A Boolean value is just one that takes the values yes and no; or equivalently true and false or 1 and 0. Named for
the mathematician and philosopher George Boole (1815-1864).

21

Algorithm 7 Making change

Define a Boolean array C[N+1][K+1]

C[0][0] := 1

FOR j = 1 to K:

C[0][j] := 0

FOR i = 1 to N:

FOR j = 0 to K:

IF ((j - ai ≥ 0 AND C[i-1][j-ai] = 1) OR (C[i-1][j] = 1))

C[i][j] := 1

ELSE

C[i][j] := 0

RETURN C[N][K]

Complexity : It is straightforward to see from this that the algorithm takes O (NK) time, by simply

inspecting all of the loops. Also, it takes O (NK) space, in the form of the array C.

It is worth noting the di�erences between this solution and the recursive solution. The key features

of a dynamic programming algorithm are the following:

(i) State space. This is encoded in the table which the algorithm works with; here, it is {0, · · · , N}×
{0, · · · ,K}.

(ii) Recurrence relation. This implicitly comes with the necessary base cases.

(iii) Time ordering. It is very important that there is some de�nite order in which we can parse

through the table so that we only ever need to refer to values already calculated, and that we do

actually use such an order. (It is possible to construct tables which cannot be �lled in at all like

this.)

Now we must work out how to use the structure of the above solution in order to �nd �rst the minimum

number of coins necessary for a solution, and then to �nd such a set.

The �rst part is achieved fairly easily by considering a new array, D[i][j], giving the minimum

number of coins needed to make a sum of j using the �rst i coins, or ∞ otherwise. We can then

simply observe again that either ai is used, or it is not, and we just need to work out which of the two

possibilities is better:

Solution. The recurrence obeyed by D[i][j] is simply

D[i][j] = min(D[i-1][j-ai] + 1, D[i-1][j])

The base case is

D[0][j] = 0 if j = 0.

D[0][j] = ∞ otherwise.

Then D[N][K] is the desired answer.

22

An example of a DP table for the case N = 4, K = 5 with ai = {2, 1, 3, 2}:
HHH

HHi
j

0 1 2 3 4 5

0 (0) ∞ ∞ ∞ ∞ ∞
1 0 ∞ (1) ∞ ∞ ∞
2 0 1 (1) ∞ ∞ ∞
3 0 1 1 1 2 (2)

4 0 1 1 1 2 (2)

Remark. The practice, depending on how we implement the algorithm (and with what data types),

we may simply store a very large number to represent∞, or possibly a meaningless value like −1 (and

then treat this as a special case in comparisons).

The next challenge is to use this to construct an optimal set.

Two possible ways of building up a valid minimal set are shown, the boxed values taking the

third and fourth coins, and the (bracketed) values taking the �rst and third. How would we go about

�nding these cells? Well, starting from any given point, we either came from the cell immediately

above (i.e. we did not select the current coin) or we came from the cell above and somewhere to the

left, corresponding to selecting the current coin. We can just go through the table, selecting an option

which satis�es the recurrence every time, and we will have an optimal set. An option which satis�es

the recurrence is one which gave the smaller value for the current cell.

Solution to minimal set problem. Trace back through the table beginning at D[N][K]. From cell (i, j),

�nd the smaller of D[i-1][j] and D[i-1][j-ai] + 1. Move to the corresponding cell, including

coin i only if the latter (i.e. D[i-1][j-ai] + 1) gives the smaller result.

Remark. In the given example, the �rst step has some ambiguity (this is because in the optimal

solution, we can take either one of the 2s); it does not matter which way we go at this point. Both

solutions will be optimal.

It is important to understand that in a DP solution, subproblems are processed at most once (like

recursion with memoization). Hence DP is useful for problems where there are many overlapping

subproblems, most of which need to be explored. It eliminates the recursive overhead in these cases

(indeed, there is often a limit on the size of the `stack' which is used when nested functions calls

are made). However, it does generally evaluate nearly all possible states, even when it may not be

necessary to do so.

Problem 1.14. How many triangulations are there of a convex N -gon?

1

i

j

This problem is equivalent to asking how many sets of N − 3 non-intersecting

edges there are11.

This has a naturally recursive feel, since adding some interior diagonal divides

the N -gon into two smaller shapes which are also convex. This might lead to the

following algorithm:

11In fact, the sequence of numbers generated by answering this question are called the Catalan numbers.

23

Solution 1? Let dp[n] be the number of triangulations of a convex n-gon.

Recurrence: We argue that vertex 1 must lie in some triangle, so we consider every triangle

speci�ed by its vertices (1, i, j), and then subdivide the resulting shapes.

dp[n] =
∑

2≤i<j≤n

dp[i]dp[j− i + 1]dp[n + 1− j + 1]

Base cases: dp[3] and dp[2] are both 1. (The latter case is there so that if we pick say i = 2,

we do not try to subdivide the degenerate polygon which is the line between vertices 1 and 2.)

State space: {2, 3, 4, · · · }

Complexity : O
(
N3
)
time, O (N) space.

The only thing omitted from our analysis is a proof of correctness.

Exercise 1.15. Does the algorithm work? Give a proof or explain what is wrong as appropriate.

1 4

2 3

1 4

2 3

There is actually a good reason for our reticence in giving an answer - the algorithm is

incorrect! The problem is an error typical of recursive counting problems - namely double

counting. Consider the simple case of a square - there are obviously 2 triangulations.

The case where the edge does not pass through the 1 node is handled correctly, as shown.

However, the other case is double-counted, as both triangles (1, 2, 3) and (1, 3, 4) give

rise to the same situation. So our algorithm gets the answer wrong.

Idea: Instead of working with vertices then, which have the ambiguity that they can belong to more

than one triangle, why not consider edges?

Solution 2. Each edge is used exactly once in each triangulation.

1

2
i

Recurrence: The edge between points 1 and 2 is connected to exactly one vertex, so:

dp[n] =
∑

3≤i≤n

dp[i− 2 + 1]dp[n + 1− i + 1]

=
∑

3≤i≤n

dp[i− 1]dp[n− i + 2]

Base cases: As before.

Complexity : Interestingly, we have in fact also improved complexity in �nding this solution; it is

now O
(
N2
)
in time and still uses O (N) space.

The Catalan numbers Cn give the number of ways of subdividing a polygon with n+ 2 sides. You

may like to attempt the following exercise:

24

Exercise 1.16. Show that the Catalan numbers also satisfy

Cn+1 =
2 (2n+ 1)

n+ 2
Cn, C0 = 1

and derive a closed-form expression for the values in terms of factorials or binomial coe�cients.

25

Lecture 5: Dynamic Programming Continued

In this lecture, we look �rst at an application of DP to another problem, and then move on to

brie�y consider ways of improving DP algorithms.

Dynamic Programming on Trees

Informally, an undirected graph G = (V,E) consists of a set V of vertices or nodes and a set E of edges

joining pairs of nodes.

A tree is a special type of graph - a connected acyclic graph. This simply means that there is always

a route between any two nodes (the graph is connected) and there is no cycle in the graph (the graph

is acyclic). We are also assuming the graph is simple, so that at most one edge is allowed between any

pair of nodes.

We will look in more detail at graphs in the following lectures - after this lecture, there is a handout

containing useful reference information.

Properties of trees:

(i) There is always one more vertex than edge: |E| = |V | − 1

(ii) There is a unique path between any two nodes.

(iii) Adding an edge to a tree creates a cycle (a tree is maximal acyclic).

(iv) Removing an edge disconnects the tree (a tree is minimal connected).'

&

$

%

A

A

The second property allows us to `root' a tree by

choosing a particular node, the root, and letting the

tree `hang down' from that node, so all other nodes

are on branches below it.

Note that in a rooted tree, nodes that are a distance

d from the root end up at level d of the rooted tree.

Also, all nodes in a tree have a unique parent, except

for the root - but the parent might be di�erent for a

di�erent choice of the root.

Many problems involving trees are amenable to DP or recursive solutions, because the hierarchical

structure inherent to a rooted tree lends itself to these techniques.

Problem 1.17 (Employee Party Problem). Given a rooted tree representing a company hierarchy,

what is the maximum number of employees I can invite to a party such that I don't invite both an

employee and his immediate boss?

Much like in the example of making change, we have a situation where, for each employee, we

choose whether or not to select them, and this a�ects what we can choose later. Inspired by this

similarity, we might come up with the following solution:

Solution 1. Let dp[i] be the maximum number of people that can be invited from the subtree rooted

at employee i (we almost always number nodes sequentially for convenience).

26

Recurrence: At this stage, the choice is whether or not we invite employee i, so we wish to

make the optimal choice between including i and excluding all i's children, and excluding i and

considering all their children. (Note that we may not want to include all their children, or indeed

i's grandchildren; but this does not matter, as we simply use the optimal values we have already

calculated for these subtrees). Hence

dp[i] = max

1 +
∑

k grandchild of i

dp[k],
∑

j child of i

dp[j]


The base cases for this are actually implicit in this de�nition - if i has no children or grandchildren,

the empty sums evaluate to 0, and the optimal choice is still correctly made.

This solution works perfectly well. The only thing worth noting is that we are exploring most levels

of the tree twice, to �nd nodes as both grandchildren and children, and iterating over grandchildren

may be slightly awkward programmatically. There is, however, a way around this.

The reason we have the need to explore two generations is because the child nodes have no informa-

tion to give us about the speci�c cases where they are or are not included - they only store information

for the optimal choice. Thus by storing that additional information, rather than disposing of it in the

max (·, ·) statement, we can simplify our algorithm a little.

Solution 2. Let dp[i][0] be the maximum number of people that can be invited from i's subtree given

i is not invited, and dp[i][1] be the same value given i is invited.

Recurrence: We now have two cases to consider, but they only involve the children of i:

dp[i][0] =
∑

j child of i

max (dp[j][0], dp[j][1])

dp[i][1] = 1 +
∑

j child of i

max (dp[j][0])

Again, there is no need to give explicit base cases.

In this case, the answer must be calculated as max (dp[root][0], dp[root][1]).

Complexity : Suppose the tree has N nodes; then there are 2N states to examine. A naïve

analysis would say that the number of children of each node is O (N), and there are O (N) nodes

to examine, so the algorithm is O
(
N2
)
. However, a more appropriate approach is to note that

each edge of the tree is examined twice (that is, we pass from parent to child twice, once for each

sum), so the time complexity is

O (N) +O (number of edges) = O (N)

since for a tree, |E| = N − 1.

Exercise 1.18.

(i) How would you go about �nding the set of employees to invite?

27

(ii) What if you were a member of the organization (not necessarily the boss), and you knew you

wanted to invite yourself?

Optimizing DP: Some Techniques

The following are some useful rules of thumb when solving dynamic programming problems, or im-

plementing ideas for solutions - it is often possible to improve on the �rst approach that comes to

mind.

Keep only what you need. Recall that in the coin-change example, dp[i][j] only depends on

dp[i-1][·]. This means that if we do not need to trace back through the tree (i.e. if we do not

need to give a set of coins, but only need the number of coins in it), then we will only ever look at

the current row and the previous row. Therefore, we need only store these two rows, which reduces

space complexity, which was obviously on the order of NK, to O (K). This is frequently a very useful

technique when the dimensions of the problem (here, N and K) grow large, as they might do when

processing large data sets.

Use fast matrix multiplication. DP algorithms can often be implemented as the multiplication

of matrices together. This arises in problems like the following:

Exercise 1.19. (See Example Sheet 1, Question 6.) Let xn be the number of ways to tile a 2 × n
room using only 1× 2 dominos. Show that xn obeys the following recurrence, which could be used for

a dynamic programming solution:

xn = xn−1 + xn−2 for n ≥ 2, x0 = 1, x1 = 1

Example 1.20. This problem can be written as(
xn+1

xn

)
=

(
1 1

1 0

)(
xn

xn−1

)
xn = Pxn−1

where xn =

(
xn+1

xn

)
is a vector. This obviously has the solution

xn = Pnx0 = Pn

(
1

1

)

so if we could calculate Pn rapidly, this would solvethe problem more e�ciently. (Note also that

this approach also automatically saves space by discarding intermediate stages of the calculation.)

If one is raising some matrix M to a large power n, it is possible to do much better than O (n)

algorithms (omitting the dependence on the dimensions of M):

28

Exercise 1.21. (See also Example Sheet 1, Question 4.)

(i) Assuming that you can do basic operations on arbitrary numbers in O (1) time, show how you

can calculation an in O (log n) time, where n ≥ 0 is a positive interger. Hint : Consider the

binary representation of n.

(ii) Using a similar method, how quickly can you compute the nth power of a k × k matrix?

In fact, it is possible to �nd ways to multiply two large square matrices more rapidly than in the

obvious implementation. Probaby most famous is the Strassen algorithm which gives a complexity of

O
(
k2.8

)
when multiplying together two k × k matrices, for k = 2m a power of two.

Remark. An alternative way to raise a matrix M to a large power rapidly is to �nd its eigenvalues and

eigenvectors, and diagonalize it, if possible. Then we have M = PDP 01 where D is diagonal, and we

can calculate

Mk =
(
PDP−1

) (
PDP 1

)
· · ·
(
PDP−1

)
= PDkP−1

and since D is diagonal it is very easy to calculate Dk:

D =


λ1

λ2

. . .

λm

 =⇒ D =


λk1

λk2
. . .

λkm


Then we can use our fast scalar exponentiation to compute Dk.

This method also allows us to deduce closed-form solutions to these recurrences - if you know how

to diagonalize a matrix, you may like to attempt the following exercise:

Exercise 1.22. Using this method, show that

M =

(
1 1

1 0

)

can be written

M =

(
Φ − 1

Φ

1 1

)(
Φ 0

0 − 1
Φ

)(
Φ − 1

Φ

1 1

)−1

where Φ = 1+
√

5
2 is the golden ratio, and deduce that the closed form of xn is

xn =
Φ · Φn + 1

Φ ·
(
− 1

Φ

)n
√

5
=

Φn+1 −
(
− 1

Φ

)n+1

√
5

Transforming a permutation problem to a subset problem. This is best seen by considering

a classic problem, known as the Travelling Salesman Problem, or TSP.

Problem 1.23 (Travelling Salesman). There are N towns, and each pair of towns is connected by a

road of known length. Find the minimal length of a tour that visits each town exactly once.

29

The brute-force approach is this case has a truly awful complexity:

Solution 1. Without loss of generality, pick a start point C, and try all tours beginning from here.

There are (N − 1)! permutations of the other towns, and calculating the length of each corre-

sponding tour takes O (N) time. Hence the complexity is O (N !).

To come up with a dynamic programming approach here, we need to �nd some way of reducing

the problem to a (time-ordered) stage by stage process.

The �rst way one might think of is to �nd the best way of visiting town 1; then town 1 and town

2; then towns 1, 2, 3; ... However, this is useless, because the previous stages are of next to no use in

calculating the next! (To see why this is, imagine that all the towns 1, 2, 3, 4, 10, 5, 6, 7, 8, 9 arearranged

in that order along a straight line - knowing that visiting towns 1 through 9 in that order is optimal

is no use in �nding when we should visit 10.)

To remedy this, we might generalize the basic idea as follows: we �nd the best return-leg of a tour

through arbitrary sets of points, and with various arbitrary starting points. This avoids the problem

of privileging some particular sequence as we did before. Then we can say that the best route back to,

say, town 1 through some selection of m towns starting at i is

the minimum length (over all towns j not yet visited) of a tour going �rst from i to j,

and then from j back to 1 via the remaining m− 1 towns.

Solution 2. Let dp[B][i] be the minimum length of the end of a tour from i to 1, given that we have

already visited all the towns in the set12 B exactly once. We have N · 2N states.

Recurrence: We are going to be taking the minimum over all towns j we have yet to visit - so

j 6∈ B - and �nding the optimal tour given that we have now also visited j. Hence

dp[B][i] = min
j 6∈B

(dp[B ∪ {j}] [j] + length (i, j))

Base cases: Clearly, for any i 6= 1, dp[all towns][i] is just length(1, i). In fact, this also

works for i = 1, because then the length is 0, as it should be.

Answer : The answer will be given by dp[{1},1].

Time ordering : It is important to verify this algorithm has some valid time-ordering - in fact, we

can see it does, because dp[B][·] only ever depends on entries dp[B'][·] where B′) B contains

more entries than B. So if we �rst consider all sets B containing n towns, then n− 1, then n− 2

and so on, we get a valid time ordering.

Complexity : We have 2NN states, and each takes O (N) time to process. Hence the time

complexity of this approach is O
(
2NN2

)
.

Remark. This second solution is signi�cantly better than the �rst, but it is still exponential-time.

Finding a polynomial-time solution, or even proving that there is no such algorithm, is a major open

12We can formalize this using the idea of a bitmask for e�ciency when N is reasonably small - we write B as an
N -bit binary number, where the jth bit from the right is equal to 1 if we have already visited town j. For example,
B = 011001012 would indicate we have visited towns 1, 3, 6 and 7, and there are N = 8 towns in total. Note that we
are mapping town 1 to the right-most bit, so this is not zero-indexed.

30

problem, though it is true that arbitrarily accurate polynomial-time algorithms exist for the Euclidean

version of the problem13. This is closely related to the so-called P vs NP problem, one of the Clay

Institute's $1m prizes.

You should be able to attempt questions 5 to 8 on Example Sheet 1 after this lecture. If

you are interested in programming, you can also attempt Problems 1-2 and 1-3 on ACOS.

13There is a polynomial-time approximation scheme, or PTAS, for the TSP given a set of points and distances obeying
all the rules of Euclidean space - the problem called the Euclidean or planar TSP. It gives a tour of length at most (1 + ε)L
where L is the optimal length in polynomial time - for �xed ε. (See http://www.cs.princeton.edu/ arora/publist.html).
Unfortunately, the dependence on ε in general makes these schemes very expensive, so one can look for an `e�cient'
or even `fully' polynomial-time approximation scheme. Often, the special case ε = 1, giving the 2-approximation, is
particularly easy to calculate, and the metric TSP (where we require only the triangle inequality) admits a fairly simple
and fast 2-approximation.

31

http://algorithms.soc.srcf.net/examples/algorithms_sheet_1.pdf
http://algorithms.soc.srcf.net/acos/index.html
http://www.cs.princeton.edu/~arora/publist.html

Handout: Graph Terminology

An undirected graph G = (V,E) comprises a set V of vertices (or nodes) and a set E of edges.

The elements of E are unordered pairs of vertices and are denoted ij, where i, j ∈ V . (The element ij

of E represents an edge between the nodes i and j.) We write V (G) for the set of vertices of G, and

E(G) for the set of edges of G.

In a directed graph, the edges are one-way (so the elements of E are ordered pairs).

In this course we will be dealing with simple graphs. This means that there are no edges of the form

ii and that there are no repeated edges. (For a directed graph it is acceptable to have one edge from

a to b and another edge from b to a.)

For an undirected graph, we say that the nodes i and j are neighbours if the edge ij exists. (In this

case, i and j are also said to be adjacent.)

The edge e is said to be incident to vertex i if i is one of the end-points of e.

G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊂ V , E′ ⊂ E and every edge in E′ connects two

vertices in V ′. The subgraph induced by V ′ ⊂ V is obtained as follows: take the set of vertices to be

V ′, and the set of edges to be E′ = {e ∈ E : e = ij for some i, j ∈ V ′}.

A path from vertex a to vertex b is a sequence of edges ac1, c1c2, ..., cn−1cn, cnb. The path is simple

if it doesn't use a vertex twice. We use the notation a b to denote a path from a to b.

A cycle is a path from vertex a to itself. If vertex a is used exactly twice (once at the beginning and

once at the end) and the other vertices are used exactly once, the cycle is simple.

A graph is acyclic if it contains no cycles.

An undirected graph G is connected if for any i, j ∈ V (G) there is a path from i to j. Otherwise it

is disconnected. A connected component is a maximal connected subgraph of G.

If G is connected, and removing i ∈ V (G) (and all edges incident to i) causes G to become disconnected,

then i is called an articulation point (or cutvertex).

For an undirected graph, the degree of a vertex i is the number of vertices j such that ij ∈ E. For
a directed graph, the out-degree of a vertex i is the number of vertices j such that ij ∈ E, and the

in-degree of a vertex i is the number of vertices j such that ji ∈ E.

An undirected graph is a tree if it is connected and acyclic. Trees have the following properties:

(i) There is a unique path between any two nodes.

(ii) The number of edges in a tree is exactly one less than the number of nodes.

(iii) Adding any edge to a tree produces a cycle. Removing any edge from a tree disconnects it.

(iv) Any tree has at least one leaf, i.e. a node of degree 1.

32

A forest is a disjoint union of trees.

T = (V ′, E′) is a spanning tree of an undirected graph G = (V,E) if V ′ = V , E′ ⊂ E and T is a

tree.

An undirected graph G is bipartite if we can write V (G) = A ∪ B where A,B are disjoint, no two

vertices in A are connected by an edge, and no two vertices in B are connected by an edge. We write

AqB to indicate that the vertices fall into two disjoint sets, so that the vertices are indexed according

to whether they lie in A or B.

33

Lecture 6: Graph Algorithms - Searching

(It is worth keeping the preceding handout to hand for reference when �rst getting to grips with

graphs.)

2 Graph Algorithms

Before we begin discussing the many applications of graphs in problem-solving, it is important to

establish a few conventions we will adhere to.

(i) We consider only simple graphs, with no self-loops, and no repeated edges.

(ii) We write n = |V | and m = |E| for the numbers of vertices and edges respectively, and label the

nodes 1, · · · , n, except where we wish to avoid confusion.

It is hopefully reasonably clear that this course does not go into detail on the implementation of

algorithms in code - similarly, we are by and large not too concerned with precisely how we represent

information we want to store in computer memory. This is the �eld of data structures, which is also a

rich area of computer science, but not the focus of this course.

However, the following table gives a summary14 of three possible methods for storing the structure

of a graph with n vertices and m edges.

Space Time

Check edge exists Iterate over a node's neighbours

Edge list O (m) O (m) O (m)

Adjacency matrix O
(
n2
)

O (1) O (n)

Adjacency list O (m) O (n) (optimal)

(i) Edge list : We simply store all of the edges in the graph in a single list. (We could also introduce

an ordering of some sort.)

(ii) Adjacency matrix : A two dimensional n×n array where each entry aij is either a 0 or 1, according
to whether the corresponding edge ij exists. For example:

(aij) =


0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0


1

2 4

3

(iii) Adjacency list : A list of n further lists, where the ith list stores all of the neighbours of node i.

Remark. In the case of a directed graph, the entries in the edge list become ordered pairs.

14Note that this table does not consider optimizations, which may take advantage of the special structure of some class
of graphs; be adaptive; or involve caching frequent queries, for example. It is also far from considering all important
graph operations - we might also think about adding or removing nodes and edges, for instance.

34

There is no `best' graph data structure, since the answer will depend not only on the information being

stored, but also what the programmer wants to do with it. For example, in `sparse' graphs15, it may

well be preferable to use adjacency lists, whereas otherwise an adjacency matrix is more e�cient for

checking if edges exist, and so on.

Often, purpose-built data structures can be devised for the special cases of graphs that commonly

arise in practice. For example, in a tree, one often distinguishes between `parent' and `child' nodes, and

might maintain these separately, so that for each node, we have a list of its children and a reference to

its parent; perhaps the children only need to store information about their parent node, and not vice

versa (as in a so-called spaghetti stack); and so on.

Similarly, there is often more information than the existence of edges to be stored - we will see later

that the idea of a weighted graph (where edges have some values attached to them) frequently crops

up (for example, in the travelling salesman problem from the previous lecture).

We will leave all of these problems aside for the moment, and concentrate on how e�ciently we can

write algorithms at a higher level, without paying attention to the underlying structures.

2.1 Search Algorithms

Problem 2.1 (Shortest path). Given two nodes v, w ∈ V (G), is there a path from v to w? If so,

what is the shortest such path? (Assume G is undirected.)

v

-
- -

-

-

-

--
-

w

Intuitively, we want to explore the graph G, by walking along

branches from the v to see if we can �nd w.

If we try this, then we need to keep track of which nodes we have

already seen, to avoid in�nite loops.

Idea: Mark unseen nodes as White, and processed nodes as Black.

Also, when we start processing child nodes, we want to make sure

we don't start processing them again before we are done, so we mark

them Grey. Initially, all nodes are White.

This gives rise to the following generic algorithm for searching

through a graph:

Algorithm 8 Generic search
Colour all nodes White

Pick a starting node and colour it G

WHILE (Grey nodes exist)

Pick a Grey node i

Mark all of its White neighbours Grey

Process i (if necessary)

Mark i as Black

15A sparse graph is one where the number of edges is signi�cantly less than the maximum 1
2
n (n− 1). There is no

universally accepted de�nition. One can pick some k with 1 < k < 2 and then de�ne the sparse graphs to be a class
with m = O

(
nk

)
.

35

To prove correctness, we note �rst that a node can only go White → Grey → Black, and every

iteration of the loop at least one node changes colour (namely i), so this cannot loop in�nitely.

Also, the algorithm only �nishes when all nodes are either White or Black. Any node which

is White cannot be a neighbour of a node which is connected to the starting node (otherwise it

would have been marked Grey). Any node which is Black must be connected to the starting node.

Therefore, there is a path from the starting node v to some other node w if and only if it is marked

Black when this algorithm is �nished, so our algorithm addresses the �rst part of our problem.

Actually, we get an added bonus once we have this algorithm - we have a way to �nd connected

components, the disjoint portions of the graph which are not linked by edges.

Algorithm 9 Connected components

Define arrays cc[·] and colour[·] of size n

Let numCC := 0

FOR each node i:

colour[i] := White

FOR each node i (from 1 to n):

IF (colour[i] = White)

numCC := numCC + 1

cc[i] := numCC

colour[i] = Grey

WHILE (Grey nodes exist)

Pick a Grey node j

Colour all its White neighbours Grey

cc[j] := numCC

colour[j] := Black

When this algorithm terminates, numCC contains the total number of connected components, and

cc[i] gives the label of the connected component of i.

Remark. The �rst cc[i] := numCC line is technically unnecessary, as it would be labelled as such by

the following search loop because it is Grey, but it is included for clarity.

Note that in the above algorithms, the only really ambiguous step is to pick a Grey node. There

are two common approaches:

• breadth-�rst search (BFS): Pick the node which was found the earliest. This means that all

children of the start node are processed �rst; then the nodes a distance 2 from the start node;

and so on.

• depth-�rst search (DFS): Pick the node which was found the latest. This means that nodes on a

long, spindly chain leading away from the node are explored �rst.

Both have many applications, and solve di�erent problems. First, we consider breadth-�rst search.

36

Breadth-First Search

Algorithm 10 Breadth-First Search
Let Q be a list for Grey nodes

Pick a starting node and colour it Grey

Add it to Q

WHILE (Q is not empty)

Let i := First element of Q

Mark all of its White neighbours Grey, and add them to the end of Q

Process i (if necessary)

Mark i as Black, and remove it from Q

This is using Q as a queue, which can be done with an O (1) `push' operation that adds elements to

the end, and an O (1) `pop' operation that removes elements from the front. We say it is a FIFO, or

�rst-in, �rst-out, data structure.

Complexity : We process each node exactly once. Each time we do so, we change its colour and

scan its neighbours. So using an adjacency matrix, the time complexity is certainly O
(
n2
)
. But in

fact, each edge is scanned at most twice (once from each endpoint), and a constant amount of work is

done per neighbour found - hence using an adjacency list gives complexity O (n+m). Therefore, this

is advantageous when the graph is sparse, i.e. m� 1
2n

2.

1

2 3

4
5

6 7 8

9

The traversal order of a graph search algorithm refers to the sequence in

which nodes are visited, and as noted above, this is signi�cantly di�erent for

BFS and DFS. The diagram shown assumes that the start node is 1, and the

algorithm runs through children from left to right - the numbers indicate the

order in which the nodes are visited.

Note that the sequence in which points are visited naturally generates a tree

(or more generally, a forest, if there is more than one connected component).

This is called the BFS forest of the graph, given the start nodes selected. If the

graph is connected, this is one way to generate a spanning tree for the graph.

(We will see later that the problem of �nding a minimum spanning tree arises

in certain applications.)

Exercise 2.2. Solve the second part of Problem 2.1 - i.e. show how to �nd a

shortest path.

The solution is given at the start of the next lecture.

37

Lecture 7: Graph Algorithms - Searching Continued

Solution to shortest path problem. BFS from v. Nodes are visited in `layers' of increasing distance

from v. Hence we can assign a distance label di to each node i before queuing.

Initially, dv = 0, and di =∞ for all other i.

For a grey node x, colour White neighbours Grey and tag them with dy = dx + 1.

This terminates with all distances stored in the di, with an ∞ indicating that there is no con-

nection. This can be proved by induction on the distance of a node from v (see the following

exercise).

To reconstruct the shortest path afterwards, we need only maintain a predecessor array p [·] so
that p[y] = x means that y was found from x. Reading backwards from the target node w will

give the shortest path.

Complexity : The same as the corresponding BFS, O (n+m).

Exercise 2.3. Prove that di does in fact give the shortest distance to the node i.

Remark. We will see a more complicated version of this problem next lecture, when we consider the

problem where di�erent edges have di�erent costs.

Depth-First Search

Algorithm 11 Depth-First Search
Let S be a list for Grey nodes

Pick a starting node and colour it Grey

Add it to S

WHILE (S is not empty)

Let i := Last element of S

Mark i as Black, and remove it from S

Mark all of i's White neighbours Grey, and add them to the end of S

Process i (if necessary)

1

2 5

3
6

4 7 9

8

1

2

5

3

6

4

7

9
8

This time we are using S as a stack, which can be done with

an O (1) `push' operation that adds elements to the end, and an

O (1) `pop' operation which removes elements, also from the end.

We say a stack is a LIFO, or last-in, �rst-out, data structure.

Complexity : This is the same as for BFS, with complexity

O (n+m).

Again, looking at the traversal order for the same graph as the

BFS, we see we naturally generate a DFS forest, or in this case

tree. In fact, this structure has some special properties which can

be useful.

38

Applications of DFS

De�nition 2.4. For a graph G with DFS forest F ,

(i) a tree edge is an edge of G also in F ; and

(ii) a back edge is an edge from a node in G back to one of its proper ancestors in F .

The back edges are shown in the above �gure as the dotted lines.

A `cross edge' is an edge not in F which links two branches of F . However:

Lemma 2.5. Let F be a DFS forest of G. Then every edge in G is either a tree edge or a back

edge with respect to F .

Proof. Let e ∈ E (G) and write e = uv. Without loss of generality, assume u is coloured Grey

before v. Then consider the time when u is coloured Grey but v is still White.

Since u and v are connected, the part of the DFS starting from u will visit v before returning

to u.

Hence there is a path u v consisting of tree edges, so u is an ancestor of v. If u is a parent

of v, e is a tree edge. Otherwise, it is a back edge.

It is not immediately obvious what application this could have. However, if we have a problem

where we want to think about string of nodes which have few connections with each other, it is clear

that the branches in a DFS tree have some sort of `separability' properties.

Exercise 2.6. Design an algorithm to test for cycles in an undirected graph G. If G has cycles your

algorithm should output any one of them; otherwise it should indicate that G has no cycles. (From

Example Sheet 2, Question 2.)

Problem 2.7. Given a network of computers, �nd all computers which, if removed, would disconnect

the network (assuming the network is currently connected).

Formally, this is asking us to �nd the articulation points of a connected graph G. As usual, we

have a simple brute-force solution:

Solution 1. Remove each node one at a time from G, and check if the resulting graph is connected (i.e.

if it has exactly one connected component).

Complexity : O (n (n+m)). (Recall we can use BFS or DFS to identify connected components.)

However, using our DFS tree, we can actually do considerably better.

Solution 2. Let T be a DFS tree of G - note that one must exist, since G is assumed to be a connected

graph. We root T at the node chosen as the start point for the corresponding search.

39

The reason for considering T is that it has no cross edges - so no two branches of the tree are

connected to each other at any point other than where they diverge. So a branch is totally

isolated except for its connection to the branch point, and any back edges from the branch to

nodes higher up. Therefore, a node v is an articulation point if and only if

v is the root of T , and has at least two children

or

v is not the root of T , and some descendant of v is not connected to any ancestor

of v in T (that is, via a back edge).

Let depth(v) be v's depth in T (i.e. its distance from the root), and let H [v] be the highest

(least deep) level of T which can be reached from v by going up at most one back edge from

somewhere in v's subtree. Then consider some node v other than the root, and write u for the

parent of v. There are three possible cases:

• v and its subtree are isolated - that is, connected only to the rest of the tree via u - and so

H [v] = depth (v);

• v is connected via a back edge vw to a node higher than any of its descendants can reach

via a single back edge, so H [v] = depth (w); or

• one of more of the descendants are connected, via back edges, to points higher than can be

reached directly from v - and then H [v] = H [w], where w is the child of v with a subtree

connected to this back edge.

Hence we have

H [v] = min


depth (v)

H [w] for tree edges vw where w 6= u

depth (w) for back edges vw

Now if v (other than the root) is an articulation point, then removing v would disconnect some

child w of v from the rest of the tree. Therefore, there are no back edges from within w's subtree

reaching any ancestors of v, and we must have H [w] ≥ depth (v). Conversely, if w is a child of

v and H [w] ≥ depth (v), then w's subtree must be disconnected from the rest of the tree when

v is removed.

So to check if v is an articulation point, we need only check if H [w] ≥ depth (v) for each child w

of v.

We can calculate H [·] recursively (going up the tree) if we know what the depth of each node is.

But depth (i) is easily found by maintaining a `current depth' variable during the DFS, beginning

at 0, and giving each unprocessed child of i the depth (depth (i) + 1).

Complexity : This runs in O (n+m) time; since G is connected, n ≤ m+ 1 so the the algorithm

is more simply O (m).

40

Exercise 2.8. Write the code to calculate H [·], including the calculation of depth (·). You should

check it works for a few small cases.

You should be able to attempt questions 1 to 3 on Example Sheet 2 after this lecture. If

you are interested in programming, you can also attempt Problem 2-1 on ACOS.

41

http://algorithms.soc.srcf.net/examples/algorithms_sheet_2.pdf
http://algorithms.soc.srcf.net/acos/index.html

Lecture 8: Graph Algorithms - Shortest Paths in Weighted Graphs

2.2 Shortest Path Algorithms

The obvious generalization of the shortest path problem from lecture 6 comes from having edges of

di�erent `lengths'. Formally, we need some way of attaching numbers to the edges. We do this by

introducing weights:

De�nition 2.9. A weighted graph is a graph G = (V,E) together with a function w : E → R. We

write w (i, j) =∞ if ij 6∈ E.

Similarly, to formalize the statement of the `shortest path' problem, and to �x some notation, we

make the following de�nition:

De�nition 2.10. A path

x = x0, x1, · · · , xm = y

is a shortest path from x to y if it minimizes

m−1∑
i=0

w (xi, xi+1)

We write d (x, y) for the length of a shortest path from x to y.

We can then state the shortest path problem very concisely:

Problem 2.11 (Generalized shortest path). Given a weighted graph G, and two nodes x and y, �nd

d (x, y). Assume w (i, j) > 0 for all i, j.

The last condition will be crucial in determining how we go about solving this problem, as we shall

see below16.

x0

x1

x2

x3 x4

y
z

With this positiveness condition, there is an obvious way to generalize our

previous solution, of exploring in order of increasing depth:

Idea: Visit nodes in order of increasing distance from x.

In the following discussion, we will write xk for the kth furthest node from

x. We say x0 = x. The question then becomes: how do we �nd xk given

x0, · · · , xk−1?

Well, schematically, consider the diagram shown. It seems obvious that if

y is the next closest node, then the shortest path from x y must come straight out of the circle,

without visiting any other node �rst. Formally:

16Strictly, we could allow w (i, j) = 0 as well, but that is just equivalent to the same problem with i = j identi�ed as
the same node.

42

Lemma 2.12. A shortest path x xk has the form x, a1, · · · , am, xk where ai ∈ {x0, · · · , xk−1}.

Proof. Suppose ai 6∈ {x0, x1, · · · , xk−1}. Then ai is closer to x than xk is - a contradiction to the

de�nition of xk.

So de�ne a function fk (z) as

the length of the shortest path x z that does not leave {x0, · · · , xk−1, z}.

By the above lemma, this has the property that fk (xk) = d (x, xk).

In fact, by conditioning on the last node visited before z (which must be one of x0, · · · , xk−1), we

have

fk (z) = min
0≤l<k

{d (x, xl) + w (xl, z)}

Note that

fk (xk) = d (x, xk) ≤ d (x, z) ≤ fk (z)

for all z ∈ V \ {x0, · · · , xk−1} as nodes in this set are at least as far away as xk.

Solution. Iterate over k, maintaining an array F[i] storing fk (i), and another array D[i] storing

d (x, i). Then by the above note, at each stage, the node minimizing F[i] is xk. Also, by the

previous equation, the array F[j] can be updated by noting that the shortest path is either the

one previously found, or one going on the shortest path to i (of length F[i] = D[i]) and then

directly to j.

Complexity : There are n values of k to iterate over, and at each stage there are O (n) nodes to

consider for xk. The only other work which is done is in iterating over the neighbours of each

node, and as we saw for the search algorithms, each edge is considered at most twice, giving rise

to O (m · 1) work. So the time complexity of the algorithm is O (n · n+m) = O
(
n2 +m

)
.

This is called Dijkstra's algorithm and in pseudocode is as follows:

Algorithm 12 Dijkstra's algorithm

F[i] :=

{
0 if i = x

∞ otherwise

FOR k from 0 to n-1:

Find i in V\ {x0, · · · , xk−1} that minimizes F[i]

xi := i

D[i] := F[i]

FOR ij an edge:

F[j] := min(F[j], D[i]+w(i,j))

Remark. If m� n2, so the graph is not dense, then we can actually do better, reaching a complexity

of O ((n+m) log n). See the handout following this lecture for details, on page 47.

43

Up to now, we have been solely concerned with the case of positive (or at least non-negative)

edge weights. The following problem illustrates one situation where the more general case, involving

negative weights, could arise.

Problem 2.13 (Arbitrage). Given a set of currencies, and a set of exchange rates, �nd the greatest

amount of currency B that may be obtained for a single unit of currency A.

¿

$ U

...

£1 : $1.50 £1 : U133

$1 : U89

This problem is di�erent to anything we have seen before

because it is inherently multiplicative - so the overall rate R =

r1r2 · · · rk where we make exchanges with rates ri. But we can

easily transform it to an additive problem by taking the logarithm

of all of the rates - then

logR = log r1 + log r2 + · · ·+ log rk

Since log is strictly increasing, we still want to �nd the maximum

sum of logarithms.

In fact, under the following transformation, the problem becomes a lot more familiar:

(i) let the nodes be the set of currencies, V = {currencies}.

(ii) let the edges represent the exchanges, E = {exchanges}.

(iii) let the edge weights represent exchange rates by

w (i, j) = − log (exchange rate i→ j)

where we negate the logarithm so that better value exchange rates correspond to smaller (i.e.

closer to −∞) weights. Note that the edge weights are actually anti-symmetric here; w (i, j) =

−w (j, i).

Here, we want to �nd a path with the smallest sum of weights, asR = exp (
∑

log rij) = exp (−
∑
− log rij).

This is precisely the shortest path problem, but with negative weights allowed.

A

B

C

1

4

1

-3

It is important to see exactly why Dijkstra doesn't work in this

situation. It is clear what goes wrong with the arguments above -

Lemma 2.12 cannot hold in general, because of situations like that

pictured - the second iteration (for k = 1) concludes that the closest

point to the root (black) is A with distance 1, and calculates the current

shortest path to C, i.e. F[C], as being 2. On the next iteration, it then

con�rms this as the shortest distance to C, which is incorrect, as going to C via B instead has length

just 1.

The �rst thing we need to consider is whether or not there actually is a shortest path. Clearly,

there wouldn't be if there was some cycle of conversions we could repeatedly carry out, decreasing the

total weight each time. In fact, the absence of such a cycle is also precisely the necessary condition:

44

Lemma 2.14. Shortest paths exist ⇐⇒ there is no negative weight cycle. (Assume the graph is

strongly connected - i.e. that it is possible to get from any node to any other node in both directions.)

Proof. Suppose there is a negative weight cycle z z. Then paths

x→ z z · · · z︸ ︷︷ ︸
n

→ y

have arbitrarily small (negative) length as n→∞.

Suppose there is no negative weight cycle. Then it is su�cient to consider acyclic paths, as

adding a cycle will not result in a strictly shorter path. But acyclic paths can have at most n− 1

edges between n nodes - so there are �nitely many of them, and hence a minimum exists.

So how can we �nd a shortest path, assuming one exists? Our previous attempt, Dijkstra, fails

because we didn't allow for the possibility of shorter paths being found later on, via nodes that are

themselves apparently further away. This is because the assumption that new paths have to originate

from some speci�c set of nodes, the {xj}, is now invalid. But there is nothing wrong with our basic

idea of trying to extend old paths to make more e�cient routes - we simply need to allow for �nding

improved routes to all nodes, not just those outside the magic set {xj}.
The only issue, therefore, is whether or not our algorithm will halt with a correct �nal state. But

we know from the above that a shortest path has at most n− 1 edges, so if we gradually increase the

number of edges we are considering, we can be sure that route lengths will never improve after this

many steps.

Let us write d (x, y, k) to be the length of the shortest path x→ y with at most k edges.

Solution. Run a DP on d (x, y, k).

Recurrence: A path with at most k edges is only an improvement on a path of at most k − 1

edges if there is a shorter path reaching a neighbouring node in at most k − 1 edges that goes

on to reach this node via the kth edge. Hence

d (x, y, k) = min

d (x, y, k − 1)

minz∈V {d (x, z, k − 1) + w (z, y)}

Base case: Obviously, as with Dijkstra,

d (x, y, 0) =

0 if x = y

∞ otherwise

This is easily implemented in a similar way to our previous DP algorithms. Let D[y][k] store

d (x, y, k).

45

Algorithm 13 Bellman-Ford algorithm

D[y][0] =

{
0 if x = y

∞ otherwise

FOR k from 1 to n-1:

FOR z ∈ V:

D[z][k] := D[z][k-1]

FOR ij an edge:

D[j][k] := min(D[j][k], D[i][k-1] + w(i,j))

Complexity : Implemented this way we have an O (n (n+m)) = O (nm) algorithm (assuming that

n < m, as holds for a reasonably well-connected graph).

Remark. We could use a pair of one-dimensional tables by discarding the rows in D corresponding to

optimal paths with at most k−2 nodes, since this information is always carried over into the next row

if it remains relevant.

Note that as with Dijkstra, we can also add a predecessor array to actually retrieve the shortest

paths from x to all other nodes after running Bellman-Ford. An interesting extension to the problem

we have discussed is the all pairs shortest path problem, in which we are asked to �nd the lengths of

the shortest paths between every pair of nodes. The Floyd-Warshall algorithm solves this problem,

but we will not discuss this here.

You should be able to attempt question 4 on Example Sheet 2 after this lecture. If you

are interested in programming, you can also attempt Problem 2-2 on ACOS.

46

http://algorithms.soc.srcf.net/examples/algorithms_sheet_2.pdf
http://algorithms.soc.srcf.net/acos/index.html

Handout: Dijkstra with Heaps

In lectures, it was stated that the runtime of Dijkstra's algorithm could be `improved' from O(n2)

to O((n+m) log n) (noting that this is actually worse if the graph is dense). Here we show how to do

this.

Priority Queues

The new data structure we will need is the min-priority queue. Informally, this is a gadget that we

keep throwing new objects into, which we can interrogate at any point to ask it to spit out the smallest

one. By `smallest' we mean that every object comes with a key k, and these keys can be compared

to determine the objects' size ordering. More formally, we expect the gadget to support the following

operations:

• EmptyQ() - returns an empty Queue

• Insert(Q, x, k) - inserts object x with key k into Q

• ExtractMin(Q) - returns the minimal object in Q and removes it from Q

• DecreaseKey(Q, x, k) - adjusts object x's key to k, which is smaller than its previous value

It's not too hard to think of a data structure that does the job; for instance, a list of (x, k) pairs

sorted by k. Then the operations Insert and DecreaseKey run in O(n) time, where n is the number

of objects in the queue. This may be good enough for some things, but for our purposes we want all

these operations to run in O(log n) time. So we must �nd another data structure.

Binary Heaps

De�nition

A binary tree is a rooted tree where each node has at most two children. An almost complete binary

tree is one where depths of leaves di�er by at most one, and the deepest leaves are all on the left.

(Hence there is a uniquely shaped binary tree of each size.) A min binary heap is an almost complete

binary tree with keys and objects stored at the nodes, such that a node's key is greater than or equal

to its parent's. The name `heap' is appropriate: we have described a sort of spreading mound of

objects with the smallest ones at the top. Note also that the maximum depth of the heap is ∼ log2 n,

so provided our operations just move `up and down' the tree, they should run in O (log n) time as

required.

Representing Binary Heaps

In practice, we represent a binary heap by numbering the nodes 1, · · · , n in a top-down, left-to-right

fashion, and thereby storing the nodes in an array. Then the following operations allow us to navigate

the tree:

Parent(m) =
⌊m

2

⌋
LeftChild(m) = 2m

RightChild(m) = 2m+ 1

47

If the left/right child doesn't exist, you get a value greater than n. We assume that the array is always

big enough, and that we have the variable n stored somewhere sensible.

Implementing Priority Queues

It turns out we can indeed use heaps to implement an e�cient priority queue. EmptyQ is trivial:

EmptyQ():

n := 0

RETURN a new array

DecreaseKey turns out not to be too bad:

DecreaseKey(Q, x, k):

Set x's key to k

WHILE Parent(x) != 0 AND k < Parent(x)'s key:

SWAP x and Parent(x)

where we write SWAP to mean swap keys and objects. You can check that this works; i.e. given that

the heap conditions are satis�ed beforehand, they will be afterwards as well.

We can now do Insert with a cunning trick. We can just put the new node at the end (i.e. bottom

right) of the tree, and run DecreaseKey until it's in the right place.

Insert(Q, x, k):

n := n + 1

Q[n] := (x, k)

DecreaseKey(Q, x, k)

We do something similar to implement ExtractMin: �rst we write an IncreaseKey procedure, which

is slightly more �ddly than DecreaseKey.

IncreaseKey(Q, x, k):

SET x's key to k

WHILE x is not a leaf:

c := a child of x with minimal key

SWAP x and c

Then, we can do the same trick in reverse for ExtractMin:

ExtractMin(Q):

(x, k) := Q[1]

SWAP Q[1] and Q[n]

n := n-1

IncreaseKey(Q, 1, Q[1]'s key)

RETURN (x, k)

Again, you can check these implementations work and run in worst-case O(log n) time.

48

Dijkstra using Heaps

How can we use this to speed up Dijkstra? The slow bit is when we iterate over all nodes to �nd a

node that minimizes the magic function fk. So if we keep a queue of all nodes keyed by their value of

fk, we can hopefully do this in O(log n) time. Of course, we'll have to keep updating the queue as fk

changes, which will take some time as well.

Here goes:

Algorithm 14 Fast Dijkstra

SQ := EmptyQ()

Insert(Q, 0, 0)

FOR i from 1 to n-1:

Insert(Q, i, ∞)

FOR k from 1 to n:

(i, d) := ExtractMin(Q)

D[i] := d

FOR all edges ij:

IF d + w(i,j) < j's key

DecreaseKey(Q, j, d + w(i,j))

Complexity : We do n ExtractMin's and m DecreaseKey's, so the algorithm runs in time O((n +

m) log n) as claimed.

Remark. As an aside, we can actually speed this up further using Fibonacci heaps, which can do the

DecreaseKey operation in constant time on average. That reduces the runtime to O(n log n+m).

Exercise 2.15. Prove that O (n log n+m) is optimal for a Dijkstra implementation.

Hint: You may use the fact that a sort cannot be performed faster that O (n log n).

49

Lecture 9: Graph Algorithms - Minimum Spanning Trees

2.3 Minimum Spanning Trees (MSTs)

Imagine we have a city full of computing centres that need to be linked together, or a country with

a electricity substation that has to be connected to all its cities - where should we lay the cable to

minimize the amount of cable we must use?

This type of problem is a restricted (Euclidean) version of a much more general problem, which we

can formalize as follows:

Problem 2.16. Given a connected weighted graph G = (V,E) with positive edge weights, �nd a

subset T ⊆ E such that (V, T) is connected and the sum of the weights of the edges of T is minimized.

Remark. T must be a (spanning) tree17: if it was not, then it would contain a cycle, and we could

remove any edge to obtain another spanning set of edges with a strictly smaller total weight - a

contradiction.

We can easily dismiss the brute force solution of trying all sets of n − 1 edges as being woefully

ine�cient for substantial n and m, since there are
(

m
n−1

)
of these.

So what other approaches could we adopt? A natural idea would be to gradually build up a tree

using the least expensive edges available:

Solution? Start with T = ∅. Iterate through edges in increasing order of cost, adding an edge to T if

and only if it doesn't create a cycle.

Complexity : Sorting edges is O (m logm), and checking if an edge creates a cycle can be done in

O (n+m) - see Exercise 2.6. Hence overall, this is

O (m (n+m) +m logm) = O
(
m2
)

The problem is that we have no idea whether or not this actually works.

One way of rephrasing the approach our putative solution takes is to say that we add an edge to T

(proceeding in order of increasing weight) if and only if it joins two di�erent subtrees. (Since we start

with T = ∅, we initially take every node to be in its own tree.) We need to show that if we do this,

then T remains a subset of some MST.

De�nition 2.17. A cut is a partition V = S
∐

(V \S) into two disjoint sets with neither being

the empty set (S 6= ∅, V). (The notation A
∐
B just means the disjoint union of A and B, where

we label elements according to which set they belong to.)

We say an edge e straddles the cut if e has one endpoint in S and one in V \S.

We therefore would like to prove the following lemma:

17Formally, since T is just a collection of edges, what we are really saying is that (V, T) forms a tree. This abuse of
notation is fairly harmless, since it is clear what the set of nodes is.

50

Lemma 2.18 (Cut Lemma). Let T be a set of edges in some MST. Let S
∐

(V \S) be a cut, and

suppose T contains no edge straddling the cut.

Let e be the cheapest edge straddling the cut - then T ∪ {e} is also part of some MST.

To prove this, assuming T ⊆ M for M some MST, we need to show that e is one valid way of

joining the two sides of the cut - so that there is some M ′ which straddles the cut using e.

Proof. Let M be an MST containing T , and write e = uv for u ∈ S and v ∈ V \S.
Now in M , there is a unique u v path - call this P . Since u and v are separated by the cut,

there is an edge f ∈ P that straddles the cut.

De�ne M ′ = (M\ {f})∪{e}. Removing f splits M into two subtrees, one containing u and one

containing v, and therefore adding e makes M ′ another spanning tree.

But weight (e) ≤ weight (f) by de�nition of e, and hence

weight (M ′) ≤ weight (M)

so as M is an MST, M ′ must be too. Therefore, T ∪ {e} ⊆M ′, a minimum spanning tree.

So we are done! And this gives us immediately:

Corollary 2.19. The above solution is correct.

We call it Kruskal's algorithm.

Remark. Using a disjoint set data structure, we can bring the complexity of Kruskal's algorithm down

to O (m log n) (or better if the edges are already sorted by weight, or can be sorted in better than

O (m log n) = O (m logm) time). See Kleinberg & Tardos, Chapter 4, for details18.

From the cut lemma, we can actually deduce another similar solution:

Alternative Solution (Jarník-Prim). Start with S = {v} for some v ∈ V . Keep growing S using the

cheapest edge between S and V \S until S = V . The edges used constitute the MST T .

This solution, often called the Jarník-Prim or just Prim's algorithm, can be easily proved correct

using Lemma 2.18.

Complexity : A simple analysis concludes this is O (nm). But we shouldn't have to examine all

edges at each stage.

An improvement can be made by maintaining 2 arrays, c[i] containing the node in S closest to

i, and l[i] containing the cost of reaching i from S, namely weight (i, c[i]). Initially, c[i] is v

for all i and l[i] is weight (i, c[i]).

At each step, �nd j 6∈ S with the minimum l[j] and then update the arrays as follows:

18J. Kleinberg, E. Tardos Algorithm Design. Pearson Education 2005.

51

c[j] := j

l[j] := 0

FOR each node k adjacent to j:

IF (weight(k,j) < l[k])

l[k] := weight(k,j)

c[k] := j

Complexity : We do O (n) iterations, and each time we �nd the nearest missing node in O (n) steps

and update its neighbours in O (deg j) where deg j is the degree of j. So the total complexity is

O

n · n+
∑
j∈V

deg j

 = O
(
n2 +m

)
Remark. Again, we can `improve' this to O (m log n) time by using a priority queue (see the handout

on optimizations for Dijkstra).

Before moving on from MSTs, we address a few related problems.

Problem 2.20. Solve the minimum spanning graph problem (Problem 2.16) if zero and negative edge

weights are allowed.

Clearly, T need no longer be a tree - there is no reason not to include all zero- and negative-weight

edges in it! In fact, we can solve this problem easily as follows:

Solution. Put all edges with negative or zero weight into the set T , and then modify Kruskal to run

on the resulting graph.

Exercise 2.21. Write down pseudocode showing exactly how we would implement this variant of

Kruskal.

Both algorithms (Kruskal and Jarník-Prim) are examples of greedy algorithms (see the next lecture)

- this basically means they choose the best available option at each stage. This makes the problem

perhaps deceptively easy to solve.

But many variants of the MST problem are actually NP-hard19; for example,

(i) �nding the minimum subtree spanning at least k nodes.

(ii) �nding the spanning tree with the most leaves.

(iii) �nding the minimum Steiner tree containing the initial nodes in V . When we build a Steiner

tree, we are allowed to introduce new nodes at intermediate points to reduce the total length of

the edges needed to network all the original ones together - we assume we have some structure

like the Euclidean plane that allows us to calculate the lengths of as-yet non-existent edges. For

example, if we want to distribute power to n nodes, and want to minimize the cable which we

lay, we would try to �nd the Steiner tree for these nodes.

19This puts them in one particular class of `hard' problems that no-one knows how to solve e�ciently.

52

Example 2.22. Solution of a four-point Steiner tree problem, with initial points A,B,C,D, leading

to the creation of two new points, S1 and S2:'

&

$

%

A B

C D

A B

C D

S1

S2

Remark. Finding the minimum spanning tree of a connected graph in the general case of a metric

Steiner tree (i.e. where the edge weights obey the triangle inequality) actually gives a 2-approximation

- that is, the total length of the edges used in an MST is never any more than twice that of the optimal

Steiner tree.

For the Euclidean Steiner tree problem, the MST is at most a factor 2/
√

3 u 1.15 worse than the

optimal solution.

You should be able to attempt questions 5 and 6 on Example Sheet 2 after this lecture.

53

http://algorithms.soc.srcf.net/examples/algorithms_sheet_2.pdf

Lecture 10: Greedy Algorithms

3 Greedy Algorithms

As we saw last time, sometimes it is possible to make choices which are in some sense `optimal' at

each stage, and end up with a solution which is also optimal overall. However, it is obviously quite

possible that this does not work. (Recall, for example, the suggested solutions to the `Books' problem

from the �rst lecture.)

In this lecture, we will brie�y discuss a few problems with greedy solutions, hopefully picking up a

few useful techniques for problem-solving.

Problem 3.1. Given N events with start and �nish times (si, ti), with si < ti , what is the maximum

number of events I can attend, assuming I can attend at most one at any given time?

Solution 1. Try all 2N subsets. This has a painful time complexity, and becomes impractical for large

N .

We could view this as a degenerate or trivial greedy algorithm - it has one stage, and makes the

optimal choice by evaluating the entire space!

So let us consider making more immediate decisions - what criterion could be used to pick out a

particular element? One natural approach is to assume that short events, being less likely to have

clashes, should be preferred:

Solution 2? Pick the shortest event, and remove all clashes. Repeat.

However, this is clearly wrong, as the diagram shows.

The reason is that there is no particular reason why short events should have only

a few con�icts. So instead, why not directly choose the events with the fewest clashes?

Solution 3? Pick the event with the fewest con�icts, and remove all clashing events. Repeat.

This is also wrong, though it is perhaps not so immediately obvious what a counterexample would

be.

fewest con�icts
We can, however, construct one by considering elaborate alter-

nating sequences of events ABABA such that the optimal solution

picks A,A,A and the algorithm picks B,B.

Indeed, in the pictured situation, it is possible to select 4 disjoint

events from the given diagram, but the algorithm selects just 3.

Remark. Note how intricate the counterexample can be; we should be wary of only using small cases

to investigate greedy algorithms.

Another attempt to solve the problem would be to pick earlier events �rst, and always attend the

next available event.

Solution 4? Pick the event that starts �rst, and remove all clashes. Repeat.

54

This is also too optimistic.

Let us step back a minute from coming up with greedy solutions more or less

at random, and adopt a more traditional approach.

Speci�cally, let's consider a dynamic-programming-style approach. We would like to know the

maximum number of complete events that can be attended up to some point. Let's write M (t) to

denote this, where t is some point in time. Clearly, M can only change its value at the end of an event.

Hence we can do the following:

Solution 5. Run a dynamic programming algorithm on M (ti).

Recurrence: At the time that event i ends, either we did attend event i or we didn't. Hence

M (ti) = max (1 +M (si) ,M (largest fj ≤ fi))

This involves M (si), which we have not calculated in our DP. But because M only changes it

value at the fj ,

M (si) = M (largest fj ≤ si)

so if we choose our labels so that f1 ≤ f2 ≤ · · · ≤ fN , then

M (fi) = max (1 +M (largest fj ≤ si) ,M (fi−1))

Complexity : We have N entries to calculate, and for each one we need to �nd the the largest

fj below some other point which can be done easily in O (N), so this takes O
(
N2
)
time. (Note

that sorting fi takes O (N logN) which is dominated by N2.)

Improvement : We can actually binary search through the fj to �nd the latest one no larger than

si, reducing this to O (N logN). Alternatively, we could also sort the si and then pre-calculate

the largest fj ≤ si for all i - we can store this in LFJ[i], the `latest fj ' preceding i. We can

do this by iterating simultaneously through both lists, just as we did when discussing the Merge

procedure for merge sorting - we keep increasing i one step at a time, checking whether we pass

another fj or not. If we do, then we step through the fj until we �nd the latest one fj? falling

before si; then LFJ[i] := j?; otherwise, LFJ[i] := LFJ[i-1].

Now what is interesting about �nding this solution is that it actually suggests a new approach for a

greedy algorithm - what we're interested in throughout the above iterative approach is choosing events

with the most convenient �nishing times.

Solution 6. Pick the event that �nishes �rst, and remove all clashes. Repeat.

Proof. Suppose some optimal set S of events doesn't contain E1 = [s1, f1] (where again we

write f1 = mini fi).

Then if S doesn't contain an event that clashes with E1, S would be obviously be improved

by adding E1 - contradiction.

55

If it does contain a clash, we can replace the clashing event by E1, and the resulting set is

just as good, so we have another optimal set.

Hence there is an optimal set S′ containing the event which �nishes earliest. Therefore, we

can include this event - then we are forced to remove clashes, and thereafter, we can repeat

our argument again, since E1 does not overlap with any remaining events. (Note that as S′ is

an optimal solution containing the chosen event, it does not contain any of the clashes which

were removed, so this removal is legitimate.)

Implementation: To actually implement this intelligently, we should sort the si and then the fi

separately. Then we can repeatedly �nd the smallest fi - in O (1) time - and select the event i,

and remove elements with sj < fi (using the sorted list).

Complexity : O (N logN +N) = O (N logN).

Example 3.2. Consider the events

A : [0, 3] B : [1, 2] C : [1, 3] D : [2, 4] E : [2, 5] F : [3, 4] G : [4, 7] H : [5, 6] I : [6, 9]

Sorting these by start time gives (A,B,C,D,E, F,G,H, I) whilst sorting them by �nish time

gives (B,A,C,D, F,E,H,G, I).

Our last algorithm iterates through this last list:

• Select B. Finish time is 2. Events with sj < 2 are A,B,C.

• Remove A, remove C. Select D. Finish time is 4. Events with sj < 4 are D,E, F .

• Remove F , remove E. Select H. Finish time is 6. Events with sj < 6 are G,H.

• Remove G. Select I. Done.

Hence our selected set is B,D,H, I.

A greedy algorithm like this is correct when it satis�es what is called the greedy choice property :

successively picking locally optimal solutions leads to globally optimal ones. Like this �nal example,

they tend to be fairly easy to describe and code, and also tend to be e�cient (note that we automatically

achieved the same complexity with the sixth attempt as with the iterative approach of the �fth).

However, the obvious problem is that they are often wrong.

Therefore, it is particularly important to have good techniques to prove the correctness of greedy

algorithms. We have seen 2 ways (though they are essentially equivalent) so far.

• An exchange argument, as in solution 6. Take any solution S not including the greedy choice g

and show that we can modify it to obtain a solution S′ 3 g which is at least as good.

• As in lecture 9, when deducing that Kruskal's algorithm worked - directly show that making

the greedy choices one at a time never leads to a loss in optimality of a solution to a restricted

problem which eventually coincides with the original problem.

56

We have derived several greedy algorithms so far in this course, most notably

• Dijkstra (lecture 8, on page 43);

• Kruskal's MST algorithm (lecture 9, on page 50);

• (Jarník-)Prim's MST algorithm (lecture 9, on page 51).

The employee party problem (lecture 5) also has a greedy solution, as you may like to verify:

Exercise 3.3. Show that the employee party problem (Problem 1.17) can be solved by picking all

leaves, removing the nodes they were attached to, and repeating this process on the remaining trees.

Hint : An exchange argument can be used.

Recall also that in the same `Books' problem which we had several incorrect greedy solutions for, we

came up with a correct algorithm in lecture 2 that solved the subproblem of optimizing
∑

i∈S vi−λwi

over S by a greedy algorithm. This technique (of combining a greedy algorithm with a binary search)

is an often useful approach that is frequently not discussed in textbooks.

Problem 3.4. Solve the following problem as quickly as you can:

Given a list of N positive integers, partition it into K ≤ N contiguous subsets (i.e.

sublists) such that the maximum sum of elements in any sublist λ is minimized.

(For example, the best we can do with 3, 3, 4, 2, 1, 2, 5 where K = 3 is λ = 7, as shown.)

You should be able to attempt questions 7 and 8 on Example Sheet 2 after this lecture.

If you are interested in programming, you can also attempt Problem 2-3 on ACOS.

57

http://algorithms.soc.srcf.net/examples/algorithms_sheet_2.pdf
http://algorithms.soc.srcf.net/acos/index.html

Lecture 11: Stable Marriage Problem

4 Matchings and Network Flow

We are now moving on to discuss a very di�erent type of problem to what we have considered so far:

the problem of matchings.

4.1 The Stable Marriage20 Problem

Problem 4.1. There are n students a, b, c, · · · and n supervisors A,B,C, · · · . Each student submits a

preference list of supervisors, and each supervisor submits a preference list of students. Match students

to supervisors so there is no instability - that is, no student a assigned to a supervisor A could be

partnered with some other supervisor B resulting in both a and B being happier.

This problem can be thought of as trying to avoid encouraging an `adulterous' situation, where it

is in the interest of two parties to break away from their assigned partners (though in this case we are

more concerned about bored Ph.D. students and their supervisors).

This is the kind of problem which seems like it may admit a simple greedy solution, so let us try

to �nd one:

Solution 1? Take each student in turn, and give him his favourite supervisor (among those that are

not already assigned).

Unfortunately, this is wrong:

Preferences (preferred items list �rst): A : ba a : AB Matching for A: a

B : ab b : AB B: b

The generated matching is unstable.

Solution 2? Start with a matching M . While it contains an instability, swap the a�ected partners and

repeat. Terminate when the matching is stable.

Whilst clearly if this does terminate, it gives a stable matching, we have no guarantee it will

terminate! The progression of the algorithm on the initial matching a−A, b−B, c−C is illustrated,

with the instability highlighted at each stage:

Preferences: A : bac a : ACB Matching for A: a b c c a · · ·
B : cab b : CAB B: b a a b b · · ·
C : abc c : CAB C: c c b a c · · ·

So as before, when faced with a problem intractable by an obvious greedy algorithm, why not

attempt:

Solution 3? Recursion? But this needs an exponential number of states; it is very di�cult to e�ciently

encode the idea of an instability into a recursive algorithm's state structure.

20The problem was named in the days before gay marriage was something that would ever cross anyone's minds; a
progressive variant is mentioned at the end of this lecture!

58

So what can we do? Well, there is another type of greedy algorithm we have not yet tried, which

is in some ways a combination of the �rst two solutions:

Solution 4? Every iteration, take all unmatched students, and let them apply to their favourite super-

visor who they have not yet seen; then for each supervisor, let them choose his favourite student

between those who have just applied to him and his current student (if he has one).

There are two questions which we need to answer for an algorithm such as this:

(i) Will this terminate? Clearly, in each iteration, at least one student approaches a `new' supervisor;

since there are only n2 possible proposals, this algorithm has at most n2 iterations in total, and

hence must terminate.

(ii) Is the matching produced stable? Well, suppose (without loss of generality) that a−A and b−B
are two pairs in the matching, and that a−B is an instability. Then a prefers B to A, whilst B

prefers a to b.

Then since a prefers B to A, he must have approached B earlier and got rejected at some point.

But this is impossible, since once a supervisor has selected a student, they will only ever change

that matching if the supervisor is petitioned by a student they prefer (and they remain at all

times matched with some student) - so B would never have selected b, but instead would either

have retained a or chosen a student preferable to both at some point.

Remark. You may be worried about the possibility that a student has no supervisor but has been

rejected by everyone already. But that means that the student has applied to all n supervisors.

However, as we've just seen, a supervisor never gives up a student unless they accept a new one - so if

a student ever applies to a supervisor, then from then on that supervisor will always have a student.

So the n supervisors must each have exactly one of the other n − 1 students matched to them. This

is an obvious contradiction.

Hence we do indeed have a correct solution, which seems reasonably fast:

Algorithm 15 Stable Marriage algorithm (sometimes called the Gale-Shapley algorithm)

WHILE some student has no supervisor:

FOR each unmatched student i:

Let i approach their favourite unseen supervisor

FOR each supervisor J who received an application:

Let k be the most preferable student who applied to J

IF (J currently has no student)

J accepts k

ELSE IF (J prefers k to their current student)

The current student is discarded

J accepts k

ELSE

J keeps their current student

RETURN (student,supervisor) pairs

59

Complexity : As it stands, we have at most n2 iterations, with each iteration being O (n). So this

takes O
(
n3
)
time.

But we can actually improve this by considering the proposals independently:

Algorithm 16 Better Stable Marriage algorithm
WHILE some student i has no supervisor:

Let i approach his favourite unseen supervisor A

IF (A prefers i to his current student or has no student)

Match A and i (possibly throwing out A's current student)

RETURN (student,supervisor) pairs

Complexity : There are still at most n2 iterations, by the same logic as before applied more directly,

but now the looped code is O (1) because we assume the preference list of each student is sorted, or

at least that we can look up their jth favourite supervisor in constant time.

What is interesting about a solution to this problem is considering what the students and supervisors

make of it - how fairly does it treat them all? We answer this question in the following two theorems.

Theorem 4.2. Under this algorithm, each student receives the best possible supervisor (in the sense

that there is no stable matching in which they have a more desirable supervisor).

This may seem surprising, as the algorithm appears to make students subject to the whims of the

supervisors. However, the power students wield in `voting with their feet' (so to speak) means they

actually do very well out of this process.

Proving this theorem is not actually very di�cult:

Proof. Call a supervisor `possible' for a student if there is some stable matching in which they are

paired. We are claiming no student is ever rejected by a possible supervisor.

Clearly this holds at the start of the algorithm - let us proceed inductively, assuming that the

algorithm so far respects the induction hypothesis that `no student has been rejected by a possible

supervisor'.

Suppose that a has just been rejected by A in favour of b. Then we know that b prefers A to all

other supervisors possible for b (by the induction hypothesis, any supervisors that rejected b were

impossible). Also, A prefers b to a.

But then b − A is obviously an instability in any possible matching with the pairing a − A!

Therefore, such a matching M is not stable.

Hence, if a student is rejected by a supervisor, that supervisor is not possible for a supervisor.

So because students apply to supervisors in order of preference, they each get the best possible

supervisor.

Interestingly, because students give a de�nite ranking to all the supervisors, this clearly speci�es

exactly one matching.

Corollary. The above algorithm always produces the same matching.

60

So, given that students do well, it is tempting to conclude that supervisors do not. Indeed:

Theorem 4.3. In the above algorithm, each supervisor ends up with the worst possible student (i.e.

no stable matching could contain a worse student).

Proof. Imagine that A prefers a to b, and that b is possible for A. Now suppose that the stable

matching the above algorithm gives contains the pair a−A. Then A is the best possible supervisor

for a.

Also, since b is possible for A, there is a stable matching M containing b − A (and a − C, for
some other C).

But then we can see that a − A is an instability (because A prefers a to b, and A is the best

possible supervisor for a), and hence M is not stable, which is a contradiction.

We have shown that our algorithm is student-optimal and supervisor-pessimal.

Generalizations

As with the MST problem, it is easy to come up with apparently closely related problems to which

the answers are surprisingly elusive. There are four examples below.

(i) Is there a stable matching algorithm that is `fair' for both sides? (For example, where all parties

have an equal probability to be matched with their optimal partner.)

(ii) In the worst case, how many stable matchings are there between n students and n supervisors?

(This is an open problem.)

(iii) The stable family problem (Knuth): organize 3n players - n men, n women and n dogs - families

of three, with one member from each group, so that there is no blocking triple - three players

each preferring one another to their assigned family members. (This is NP-complete.)

(iv) The stable roommates problem: Organize 2n people into pairs to share rooms with no instabilities

(i.e. a progressive stable marriage problem not excluding homosexual couples!). This is not always

possible (as can be seen from taking A : BCD, B : CAD, C : ABD and any preferences for D -

whoever D is matched with will have an instability) but it turns out there is an e�cient O
(
n2
)

algorithm21 for determining whether a solution exists, and if so �nding it.

You should be able to attempt question 1 on Example Sheet 3 after this lecture. If you

are interested in programming, you can also attempt Problem 3-1 on ACOS

21Irving, Robert W. (1985), `An e�cient algorithm for the "stable roommates" problem', Journal of Algorithms 6 (4):
577�595

61

http://algorithms.soc.srcf.net/examples/algorithms_sheet_3.pdf
http://algorithms.soc.srcf.net/acos/index.html

Lecture 12: Maximum Bipartite Matching

There are actually other types of matching problems, most notably those where the number of each

group is not the same. In this lecture, we set aside issues of preference or value, and simply consider

how many pairs it is possible to make, given two groups with only some partnerships allowed.

4.2 Maximum Matching in Bipartite Graphs

The formalism we use is probably the obvious one: we draw a graph with two columns of nodes, with

no edges joining two nodes in the same column - a bipartite graph. (Here, edges represent possible

partnerships.) The problem then becomes:

Problem 4.4. Given a bipartite graph G = (A
∐
B,E), �nd a maximum matching. (A matching of

size k is a set of k edges, each joining a node in A to a node in B, such that each node is incident to

at most one edge. A maximum matching is a matching of maximum size.)

Remark. We can assume G is connected, since each connected component can just be treated in

isolation. (You may like to check this.)

We will use the following de�nition to keep our arguments concise.

De�nition 4.5. A node is used with respect to a matching M if it is part of some edge in M .

Otherwise, it is unused. We use the terms similarly for edges.

So the question is: how do we maximize the number of used edges?

A natural approach is to adopt the method used by the second (greedy) algorithm we saw for the

stable marriage problem: begin with some matching M , and then modify it to improve it. When

used in the stable marriage problem, this failed, because it could lead to in�nite loops, as we had no

well-de�ned aspect of the matching which we were actually quantitatively improving.

This time, however, we can easily measure our improvement by recording and improving the size

of the matching. What's more, since there is obviously some upper limit on the size of the matching,

any algorithm that always improves this will terminate - we only need to check that it cannot stop at

a sub-optimal matching. The question then becomes:

What can we do with a matching to improve it?

There is one trivial case, namely where we have a pair of unused nodes linked by an unused edge - in

this case, we simply include it, and improve the matching.

a

b

A

B

But it is not too hard to come up with another situation where we can clearly improve

the matching. Imagine we have a set of four nodes like those pictured, where we could

match two pairs, but we have matched just one pair, excluding the other two. It would

obviously be better to `�ip' the system, removing the o�ending edge, and inserting the

two new ones.

It is also clear how this can be extended to more edges. This all motivates the following de�nition:

62

De�nition 4.6. An alternating path (with respect to a matching M) is a simple path in G whose

edges alternate between used and unused. (Recall that a simple path is one which does not use

the same vertex twice.)

An augmenting path (with respect to M) is an alternating path whose �rst and last nodes are

unused with respect to M .

Idea: Keep `�ipping' augmenting paths.

To come up with a way to �nd an augmenting path, it is useful to think of how we can explore a

bipartite graph G. We know two basic approaches to writing graph search algorithms, namely BFS

and DFS. We shall work with BFS here.

Solution. We modify BFS as follows:

Pick an unused a0 ∈ A and �nd all its neighbours bi ∈ B. Each bi is either already matched, or

unused. If it is matched, then �nd the unique node ai ∈ A which is currently matched to bi ∈ B,
then �nd all the neighbours of ai, and so on, until we �nd an unused node in B.

More precisely, let

A1 = {a0}

B1 = {b ∈ B : a0b is an unused edge}

A2 = {a ∈ A\A1 : ab is a used edge for some b ∈ B1}

· · · · · ·

Br =

{
b ∈ B\

r−1⋃
i=1

Bi : ab is an unused edge for some a ∈ Ar

}

Ar+1 =

{
a ∈ A\

r⋃
i=1

Ai : ab is a used edge for some b ∈ Br

}

Once we �nd an unused node in some Br, we have found an augmenting path. We can then �ip

all of its edges (between used and unused) and repeat.

Complexity : Notice that once a node is used, it remains used - and each augmenting path

increases the number of used nodes by 2. Hence there are at most
⌊
n
2

⌋
augmentations. Finding

a path is equivalent to running a BFS, which is O (n+m) = O (m) (assuming the graph is

connected) so as we do this for each a ∈ A, we have an O
(
m · n ·

⌊
n
2

⌋)
= O

(
n2m

)
algorithm.

Remark. We can actually bring this down to O (nm) by the prudent step of setting

A1 = {a ∈ A : a is unused}

So all we need to do to show that this algorithm works is to establish the following result:

63

Theorem 4.7. If there are no augmenting paths, the matching is maximum.

The converse to this theorem is obviously true, and was the justi�cation for our above suggested

solution. The theorem itself, however, is not a priori obvious, though again, the proof is not di�cult

to follow:

Proof. Suppose M is not a maximum matching, but that there are no augmenting paths. Let M ′

be a maximum matching (so |M | < |M ′|) and consider the symmetric di�erence

M∆ = (M\M ′) ∪ (M ′\M)

= {edges in exactly one of the two matchings}

Each node in M∆ has degree at most 2, because each node in M and M ′ has degree at most 1.

Therefore, M∆ consists only of simple paths and cycles. Further, in all paths and cycles, the edges

alternate between being in M and in M ′.

Now each cycle is obviously of even length as G is bipartite, and so contains equal numbers of

edges from both matchings.

But |M ′| > |M |, so there must be some simple path in M∆ with more edges in M ′ than in M .

By the alternating membership of edges, any such path must start and end with edges from the

same matching (otherwise it has even length), which must be M ′. Then this is an augmenting path

with respect to M - a contradiction, as we assumed there were no such paths.

Our solution works!

Another question we can ask about a bipartite graph is how many nodes we may select given relation-

ships that exclude certain pairs of nodes. For example, recall that in the employee party problem, we

disallowed the inclusion of two nodes when they were linked by an edge. (Note that a tree is always

bipartite, because whenever two nodes have an edge between them, one has even depth and the other

has odd depth.)

This is naturally phrased in this language of independent sets:

De�nition 4.8. An independent set of a graph G is a set of nodes S ⊂ V (G) such that no two

nodes in S are joined by an edge in G.

Problem 4.9. Given a bipartite graph G, �nd a maximum independent set of G.

It is interesting to note the strong relationship of this problem to vertex covers.

De�nition 4.10. A vertex cover of a graph G is a set of nodes K ⊂ V (G) such that each edge of

G has at least one endpoint in K.

64

We can then pose the following problem:

Problem 4.11. Given a bipartite graph G, �nd a minimum vertex cover.

In ths diagram shown, for example, the nodes in squares form a vertex cover,

and the other nodes form an independent set. This relationship is actually totally

general: in fact, this means that these two problems are exactly equivalent. We

need to prove the following key theorem.

Theorem 4.12. S is an independent set if and only if V \S is a vertex cover.

Proof.

=⇒ : Consider some edge e ∈ E. If neither of e's endpoints is in V \S, then they are both in

S, which is a contradiction.

⇐=: Take two nodes a, b ∈ S. If ab is an edge in G, then it is not covered by V \S, so V \S
cannot be a vertex cover, again a contradiction.

Hence these conditions are equivalent.

Remark. Note that this theorem holds for all graphs, not just bipartite ones.

What is striking, however, about the independent set/vertex cover problems is that they actually

have a strong relationship to matchings in a bipartite graph.

Theorem 4.13 (König). For a bipartite graph G, the size of a maximum matching equals the size

of a minimum vertex cover.

Proof. We can see that |M | ≤ |K| for any matching M and vertex cover K, as for any edge e ∈M ,

at least one of e's endpoints must be in K, and no two edges in M share an endpoint.

So ifM? is a maximum matching, and K? a minimum vertex cover, we have |M?| ≤ |K?|. Then
if we can �nd a vertex cover K such that |K| ≤ |M?|, we have |M?| = |K?| and we are done.'

&

$

%

U

P Q

A \ P
B \Q

65

So let M? be a maximum matching, and let U be the set of unused nodes in A. Let W be the

set of all nodes reachable from U via alternating paths; then let P = W ∩A and Q = W ∩B.
There can't be an edge from P to B\Q (because otherwise the endpoint in B would be in W ,

and hence not in B\Q). So K = (A\P) ∪Q is a vertex cover.

Note that all nodes in A\P are used, by de�nition of U , as are all nodes in Q (otherwise there

would be an augmenting path). Also, there can't be a used edge between A\P and Q (because

otherwise the endpoint in A is in P). So every node in K corresponds uniquely to an edge in M?.

Therefore, |K| ≤ |M?|, and by the above we are done.

This surprising result also allows us to �nd a maximum independent set explicitly.

Exercise 4.14 (Rooks problem). What is the largest number of rooks we can put on an N × N

chessboard so that no two are attacking each other (that is, no two are in the same row or column)?

Now �nd an algorithm to solve this problem given that there are some holes in the board where we

can't place rooks (but over which they can still attack).

You should be able to attempt question 2 on Example Sheet 3 after this lecture. You

might also like to try the Rooks Problem challenge, as suggested in the last exercise. If

you are interested in programming, you can also attempt Problem 3-2 on ACOS.

66

http://algorithms.soc.srcf.net/examples/algorithms_sheet_3.pdf
http://algorithms.soc.srcf.net/challenges/challenge7.html
http://algorithms.soc.srcf.net/acos/index.html

Lecture 13: Maximum Flow

In this lecture, we move on to consider an apparently unrelated type of problem, more like the

shortest path problems we dealt with previously. We are interested in the properties of networks,

speci�cally �ow networks. We will then see how this relates to the matching problems we dealt with

previously.

4.3 Maximum Flow

De�nition 4.15. A �ow network N = (V,E, c, s, t) is a weighted, directed graph (V,E) with two

speci�ed nodes, a source s ∈ V and a sink t ∈ V . The weights given by c : E → N are called

capacities. (We will also consider non-integer capacities later, c : E → R+.)

For the purposes of intuition, this is probably best thought of as a network of tubes of various widths,

linking the source to the sink, with di�erent sizes of pipe being able to carry di�erent amounts of water

along the routes to the sink.

With this in mind, we can imagine controlling the passage of water through the points in the

network to realize various di�erent �ows. This is formalized as follows:

De�nition 4.16. A �ow f is a function E → N with the following properties:

(i) for all edges ij ∈ E, the �ow lies between 0 and the total capacity of the edge:

0 ≤ f (i, j) ≤ c (i, j)

(ii) for all vertices v ∈ V \ {s, t} (excluding the source and the sink), the amount of �ow entering

the node equals the amount leaving:∑
jv∈E

f (j, v) =
∑
vi∈E

f (v, i)

The value of a �ow is the total (net) amount of �ow leaving the source, or equivalently (by

conservation of �ow, i.e. the second property), the amount of �ow entering the sink,

|f | =
∑
si∈E

f (s, i)−
∑
js∈E

f (j, s)︸ ︷︷ ︸
"back �ow"

Remark. If i and j are not joined by an edge (ij 6∈ E), we write f (i, j) = c (i, j) = 0 for obvious

reasons.

The obvious optimization problem is in fact one which comes up naturally in some contexts. For

example, we might have road capacities, and want to �nd the most e�cient way to get tra�c through

the system; or we might have electric load capacities, and want to get the maximum possible power

67

through an electricity grid; and so on. Also, as we will see over the coming lectures, some other

interesting types of question can be recast as so-called max �ow problems.

For now, however, we shall deal with the general abstract case:

Problem 4.17. Given a network N , �nd a �ow in N with the maximum value.

Inspired by our previous success in �nding maximum matchings by repeatedly improving the es-

timated �ow, we might try to �nd a sure-�re way of improving the network, and repeatedly loop

that until we run out of `augmentations', at which point we stop and hope we have a maximum �ow.

Thanks to the integer capacity constraint, we can always augment by an integer amount, so there is no

danger of slow convergence through arbitrary rationals (or reals). We will actually prove this by using

the fact that one integer-based algorithm we will exhibit returns a maximum �ow: see Corollaries 4.24

and 4.25 below.

This time, our idea of an augmenting path is actually simpler that that for a maximum matching:

De�nition 4.18. An augmenting path p in N is a path (v0, · · · , vn) with v0 = s, vn = t and

c (vi−1, vi) > 0 for all 1 ≤ i ≤ n.

The �rst attempt at a solution, then, would be

Solution 1? Find an augmenting path p in N and decrease the capacities along p by |p| to get a new

network N ′, and increase the �ow value by |p|. Then repeat this on N ′.

s t
1

1

1

1

1

Unfortunately, this does not work, as a bad choice of the �rst aug-

menting path will squeeze out the possibility of some others ever being

used, as shown in the diagram - if we augment along the bold path, then

we can only ever achieve a maximum �ow of one. However, if it was

possible to somehow reclaim the edges after making an augmentation,

then �nding another augmenting path allowing us to reverse the mistake we made would still represent

a de�nite improvement in the total �ow.

With this in mind, we shall not form the new network N ′ by simply removing the used capacity;

instead, we shall add back edges to allow our changes to be reversed, de�ning the residual network :

De�nition 4.19. Given a network N and �ow f , the residual network Nf is Nf = (V,E′, c′, s, t)

with

E′ = (E\ {ij ∈ E : f (i, j) = c (i, j)})︸ ︷︷ ︸
removing full edges

∪
{
ij ∈ V 2 : f (j, i) > 0

}︸ ︷︷ ︸
adding back edges

and new capacities

c′ (i, j) = c (i, j)− f (i, j) + f (j, i)

With this new approach, we can derive a new solution:

Solution 2? Find an augmenting path, augment along it, form the residual network, and repeat.

68

We shall prove, via the three following theorems, that this solution is in fact correct. It is called

the Ford-Fulkerson (FF) algorithm.

Algorithm 17 Ford-Fulkerson
FOR each ij ∈ N:

f(i,j) := 0

WHILE there is an augmenting path p in Nf:

Increase f along p by |p|

First, we establish formally the termination requirement:

Theorem 4.20. FF terminates on any network N .

Proof. Let f? be a maximum �ow in N . By the de�nition of a �ow,

|f?| ≤
∑
ij∈E

c (i, j) <∞

Since all capacities and �ows are non-negative integers, |p| ≥ 1 for all augmenting paths p.

Thus FF terminates after at most |f?| iterations.

Complexity : The complexity implied by this is O (m |f?|), where |f?| is the value of a maximum

�ow, which is not necessarily polynomial in the edge capacities22. A di�erent analysis will be carried

out in the next lecture.

To prove that FF gives a maximum �ow, we need some surprising additional theory which we have

already touched upon before.

De�nition 4.21. A cut S is a set S ⊂ V with s ∈ S and t 6∈ S. The capacity of the cut is the

total capacity of all edges crossing the cut,

c (S) =
∑
i∈S

∑
j 6∈S

c (i, j)

The important property that a cut in a �ow network has is that, because any �ow s t must cross

over the cut, the total value of the �ow is bounded by the size of the cut:

22This may seem incorrect, but it is not. When we say an algorithm is polynomial in some input data, we mean it
is polynomial in the number of bits necessary to specify it - so a linear-time algorithm will take twice as long to run
when twice as many bits are needed. So something is polynomial in the size of a graph if if is polynomial in n, because
n indicates the number of bits needed to describe all vertices. However, for every extra bit allowed to specify the edge
capacities, we double the maximum value of an edge capacity, and hence the stated maximum run-time of this algorithm.
This is actually exponential in the number of bits needed! We call an algorithm which is polynomial in the number of
bits and the value expressed by those bits pseudo-polynomial.

69

Theorem 4.22. For all cuts S and �ows f , |f | ≤ c (S).

Proof. From the de�nitions, we have∑
j∈V

[f (v, j)− f (j, v)] = 0

for all v ∈ S\ {s}, and also ∑
j∈V

[f (s, j)− f (j, s)] = |f |

from which it follows that (as the value of the �ow is precisely the total �ow crossing the cut)

|f | =
∑
i∈S

∑
j∈V

[f (i, j)− f (j, i)]

=
∑
i∈S

∑
j∈S

[f (i, j)− f (j, i)]︸ ︷︷ ︸
0

+
∑
i∈S

∑
j 6∈S

f (i, j)︸ ︷︷ ︸
≤c(i,j)

− f (j, i)︸ ︷︷ ︸
≥0


≤ c (S)

Then it is su�cient to establish is that the �ow returned by FF attains the capacity of some cut.

This is indeed true:

Theorem 4.23. Let f be the �ow returned by FF. Then there is a cut S with |f | = c (S).

Proof. Let S be the set of nodes reachable from s in Nf . Since FF terminated, there is no path

s t, so t 6∈ S and S is a cut.

For all i in S and j not in S, there is no edge ij in Nf . By the de�nition of the residual network,

f (i, j) = c (i, j) and f (j, i) = 0. Hence

|f | =
∑
i∈S

∑
j 6∈S

[f (i, j)− f (j, i)]

=
∑
i∈S

∑
j 6∈S

c (i, j)

= c (S)

Corollary 4.24. FF returns a maximum �ow.

70

So our solution is correct! What is more, this gives us another very useful result for free:

Corollary 4.25 (Max-�ow min-cut theorem). In every network N ,

|fmax| = min
S a cut

c (S)

This means that we can solve so-called min cut problems by solving the dual max �ow problem.

Exercise 4.26. Can you think of a way to handle a maximum �ow problem with the additional

constraint that at most mi capacity can �ow through vertex i?

All of these tools are very useful in solving practical problems. For now, we shall see one example

of the use of max-�ow approach, by solving a problem from the previous lecture.

Example 4.27 (Rooks problem). What is the largest number of rooks we can put on an N ×N
chessboard so that no two are attacking each other (no two are in the same row or column), given

that there are some holes in the board where we can't place rooks (but over which they can still

attack)?

s t

a

b

n

1

2

N

We can rewrite this problem as a maximum bipartite match-

ing problem, with the rows on the left and the columns on the

right. Then we link rows and columns if and only if there is no

hole at the corresponding cell on the board, and the problem

becomes to select as many (row, column) pairs as possible.

But we can turn this into a network �ow problem. Create

a source node on the left connected to each of the rows, and a

sink node on the right connected to each of the columns. Next,

orient all edges from left to right, and give them capacity 1. Then maximum �ows in this derived

network correspond exactly to maximum bipartite matchings in the original graph.

With a graph G = (A
∐
B,E), maximum bipartite matching using the FF algorithm will then give

the solution in O (nm), because the max �ow |f | is bounded above by |A| = O (n).

You should be able to attempt questions 3 to 8 on Example Sheet 3 after this lecture. If

you are interested in programming, you can also attempt Problem 3-3 on ACOS.

71

http://algorithms.soc.srcf.net/examples/algorithms_sheet_3.pdf
http://algorithms.soc.srcf.net/acos/index.html

Lecture 14: More Efficient Maximum Flow Algorithms

Recall that the Ford-Fulkerson algorithm had time complexity O (m |f |), and that we assumed we

had integer capacities in showing that FF terminated.

FF is in fact not entirely well speci�ed as it stands, because we have not said how we �nd an

augmenting path.

s

N

b

N

t

N

a

N

1

Doing this stupidly can lead to a highly ine�cient algorithm. For example,

consider the directed graph pictured. The maximum �ow is 2N and this can be

achieved in 2 augmentations. But if the augmenting paths use the edge ab or ba

every time, we will take the maximum 2N iterations.

A reasonable measure to adopt is to ensure that we take the largest augmen-

tation available each time.

Algorithm 4.28. In each step, choose an augmenting path with maximum ca-

pacity. We can use a variation of Dijkstra's algorithm to do this.

Exercise 4.29. Write down pseudocode for the modi�ed Dijkstra algorithm - de�ne the array d[i]

to be the maximum �ow that can be passed along a single path from the source s to the node i in the

residual network Nf . Initially, we take d[s] = ∞.

So we can �nd each augmenting path in O (m log n) time - but how many times do we need to do

this? The problem is that, even though we are now being sure to do the maximum amount of work

possible at each step, we do not have any bound on how many such augmentations make up a �ow.

To obtain a bound, we will prove the following lemma:

Lemma 4.30. Any �ow f in a network N can be decomposed into at most m parts, each of which

is either an s t path or a cycle.

Proof. We prove this by constructing the set of paths and cycles. Call this set S; initially, S = ∅.
While there is a positive �ow from s to t, �nd a path s t carrying positive �ow, put it in S

(decreasing �ows along the corresponding edges in N appropriately) and repeat, until there is no

positive �ow from s to t.

While there is an edge with positive �ow, follow it around until a cycle is found (there must

be a cycle, by conservation of �ow, since all s t �ow has been removed). Put this cycle in S,

decrease the �ow to compensate, and repeat.

At the end of this process, S has size at most m because in each step we reduce the �ow along

some edge to 0, and we never increase the �ow along any edge.

This result now allows us to give a complexity analysis of Algorithm 4.28, and hence of the general

case of FF.

Complexity of Improved Ford-Fulkerson

Suppose our current residual network admits a maximum �ow of value |f |. By the above lemma, this

�ow is carried by at most m augmenting paths, so the capacity of a largest-capacity path is at least

72

|f |/m, and after augmenting along this path, the maximum �ow in the residual network is now at most(
1− 1

m

)
|f |. So after T augmentations, the maximum �ow in the residual network is at most

(
1− 1

m

)T

|f |

This inequality allows us to calculate the number of iterations T required to bring the residual

network's maximum �ow down to 1, from which point we need at most one more iteration.

(
1− 1

m

)T−1

|f | ≤ 1(
1− 1

m

)T−1

≤ 1

|f |

(T − 1) log

(
1− 1

m

)
≤ log

1

|f |

The number of iterations, therefore, is at most

log 1/|f |

log (1− 1/m)
+ 1 =

− log |f |
− 1

m −O (1/m2)

= O (m log |f |)

Hence the modi�ed FF algorithm as a whole runs in

O
(
m2 log n log |f |

)
This still depends on the value of the maximum �ow, but at least the dependency is now logarithmic

rather than linear.

Eliminating Dependence on Flow Values

The analysis of the above algorithm became rather awkward because the algorithm depended inherently

on (and indeed selected routes based on) the capacities of the edges, and this seemed to force us to

include dependence on |f | in our complexities.

s

N

b

N

t

N

a

N

1

The question then becomes: what other criterion could we use to choose our

augmenting paths intelligently?

Recall that in the example at the start of the lecture, the problem was that we

passed �ow along a long path with low capacity. We have already tried avoiding

low capacity paths. The other obvious graph traversal technique which would

avoid this problem is to augment along the shortest s t path each time, which

we can do using another modi�ed form of BFS. Selecting augmenting paths in

this way is called the Edmonds-Karp algorithm.

73

Algorithm 4.31 (Edmonds-Karp). At each step, choose an augmenting path in the residual network

with the fewest number of edges.

Remark. We will use the notation d (i, j) to mean the minimum number of edges in an i j path in

the following discussion.

In our modi�ed Ford-Fulkerson algorithm, we selected paths with the largest capacities, and we

gradually decreased the capacity remaining until the algorithm terminated. Now, we are selecting

paths with the shortest lengths - and consequently, we are increasing the length of s t paths. So in

order to prove that this terminates, we want to prove a result like the following:

Lemma 4.32. Under the Edmonds-Karp algorithm, d (s, i) and d (i, t) in the residual network are

non-decreasing.

Proof. Suppose that after some augmentation, some node moves closer to s. Let i be one of the

closest such nodes. After the augmentation, there is, under our assumption, a shortest s i path

in the new residual network, so let j be the immediate predecessor of i on such a path.

Again by assumption, we know j did not move closer to s - hence the edge ji must be a new

edge in the residual network, added during the augmentation; hence the augmentation passed �ow

from i to j, as this is the only reason an edge would be created.

Therefore, before the augmentation, d (s, i) < d (s, j), because of the way we select paths - we

would not push �ow along i→ j unless i→ j was part of a shortest path s t.

But during the augmentation, we know d (s, j) did not decrease, and d (s, i) did, so this inequality

still holds:

d (s, i) < d (s, j)

This is a clear contradiction to j being a predecessor to i on a shortest path from s i, so

therefore the distances were in fact non-decreasing.

A similar argument applied to the distances to the sink t gives the required result. You can

verify this as an exercise.

Now what we know about an augmentation is that we always augment along the s t path by the

largest possible amount - hence, there is always some edge on the path which limits the augmentation.

We say this edge is saturated or critical. This, along with the strictly increasing distance property, is

enough to give us a useful upper bound on the number of iterations required:

Lemma 4.33. Edmonds-Karp requires at most mn
2 iterations.

Proof. As noted above, in any augmenting path, we saturate some edge ij. Then we cannot saturate

this edge again (or indeed use it at all) unless we send �ow back along ji at some point.

74

An augmentation from i to j will only occur if

d (s, i) < d (s, j)

An augmentation from j to i will only occur if

d (s, j) < d (s, i)

Therefore, between any two successive saturations of ij, d (s, i) must increase by at least 2, as

these values are all non-decreasing. Hence ij can be saturated at most n/2 times, since d (s, i) cannot

exceed n− 1.

But this holds for all edges, so in total we saturate at most mn
2 edges, and thus we need at most

this many augmenting paths, as claimed.

Complexity : Since each BFS is O (m), the overall complexity of Edmonds-Karp is

O
(
m2n

)
Perhaps the most impressive property of Edmonds-Karp, given how we arrived at it, is that it will

work perfectly even for arbitrary positive capacities - not just for any non-integer values, but irrational

values (assuming they are stored correctly). This is because the proofs above do not rely in any way

on the properties of capacities.

Remark. These algorithms are not the best possible. For example, the Dinitz blocking �ow algo-

rithm, which e�ectively works by using BFS techniques to �nd multiple augmenting paths simul-

taneously, runs in O
(
n2m

)
, and in O (n

√
m) for graphs with edges all of capacity 1. A further

modi�cation to this algorithm brings it down to O (nm log n) (an example of a smart data struc-

ture - in this case dynamic trees - improving performance). Also, there is a family of fast push-relabel

algorithms.

You might like to try the Plane Scheduling challenge before watching or reading the next

lecture, as a solution will be presented there.

75

http://algorithms.soc.srcf.net/challenges/challenge8.html

Lecture 15: Applications of Maximum Flow

We now consider some extensions and applications of maximum �ow.

In the following, we will write cij = c (i, j) and fij = f (i, j) to avoid drowning in brackets.

Lower Capacity Bounds

The �rst generalization we consider is a fairly natural one:

Problem 4.34. Suppose that, in addition to the edge capacities cij , each edge also has a lower capacity

bound lij ≥ 0, so that we require fij ∈ [lij , cij] for all edges ij. Find a maximum �ow, if one exists.

s t[3, 5] [6, 10]The �rst thing to be clear about is that there is absolutely no guar-

antee that a solution (or a feasible �ow) will actually exist. This was

not a problem when lij = 0 for all edges, because the 0 �ow was always feasible.

In fact, however, once we have a feasible �ow, we can just use the `augmenting paths' approach to

get a maximum �ow, so long as we note that the residual capacity of back edges is now fij − lij rather
than just fij .

So the only new work we need to do is to try to �nd a feasible �ow in the network. There is an

approach in circulation theory, which is essentially network �ow theory with lower bounds and cost

per unit �ow on edges. Whilst we will consider minimum-cost �ows in the last lecture, we want to

avoid introducing new theory to address this question.

i j

[lij , cij]

i j

[lij , lij]

[0, cij − lij]

This is fortunately reasonably easy to do, though not necessarily easy to come

up with.

The key idea is to make a small transformation as shown here - we transform

every edge into two edges, one of which has a �xed �ow, and the other of which has

no lower bound.

Using these ideas, we can gradually build up the following solution:

Solution. Modify the original network initially by transforming the bounds on each edge from [lij , cij]

to [0, cij − lij]. Now there is a feasible �ow if and only it is possible to have a �ow where lij units

of �ow leave i and lij units enter j in addition to any other value along the new ij edge.'

&

$

%

s s′

t

t′

i j[0, cij − lij]
[0, lij]

[0,∞)

[0, lij]

But this is exactly equivalent to having a source introducing lij units of �ow at j, and a sink

removing lij units of �ow at i.

76

So if we introduce precisely such a new source s′ and sink t′, connected by edges [0, lij] to j and

i respectively, then if there is a maximum �ow which saturates these edges, there is a feasible

�ow.

The only problem is that we now have a network with two sources and two sinks - but this is

easily recti�ed. Since we don't actually care about the value of our feasible �ow, we can just

consider s and t to be ordinary nodes, and allow arbitrarily large amounts of �ow to pass from

t back to s again (in the feasible �ow, this will simply be the value of the �ow).

So our transformation works as follows: make the source and sink the new nodes s′ and t′, and

for each edge ij, replace it with

• an edge s′j with fs′j ∈ [0, lij]

• an edge it′ with fit′ ∈ [0, lij]

• an edge ij with fij ∈ [0, cij − lij]

Also, add an edge ts with fts ∈ [0,∞). (This does not break our maximum �ow algorithms,

since the total maximum �ow is still bounded.)

Then �nd a maximum �ow s′ t′. Flow will go from s′ to j to t to s to i to t′. If the value

of the maximum �ow is
∑

ij∈E lij , then we have a feasible �ow - otherwise, there is no feasible

�ow.

From this point on, we are free to augment more or less as usual.

Vertex Covers

Recall König's theorem (Theorem 4.13): for a bipartite graph G, the size of a maximum matching

equals the size of a minimum vertex cover.

Also, recall the max-�ow min-cut theorem (Corollary 4.25): the size of a maximum �ow corresponds

to the capacity of a minimum cut.

Idea: We know that a maximum matching corresponds to a maximum �ow. So can we relate vertex

covers to cuts?

The answer is in the a�rmative - in fact, this will give us an alternative proof of König's theorem:

Proof. Clearly the size of a maximum matching is at most the size of a minimum vertex cover, as

we noted in the original proof.

So suppose G = (A
∐
B,E) is bipartite, and consider the network N shown:

77

'

&

$

%

s t

A B

∞
∞

∞

∞

1

1

1

1

1

1

Importantly, note that the in�nite capacities do not a�ect the solution for the maximum �ow.

So this maximum �ow in N corresponds to a maximum matching in G. Let S be the corresponding

minimum cut. (Clearly, this must be of �nite value, because e.g. the cut with all edges of the form

si has a �nite capacity |A|.)
Now let K = {i ∈ A : i 6∈ S}∪{i ∈ B : i ∈ S}. Suppose ij ∈ G, with i ∈ A and j ∈ B. The only

way K can fail to cover ij is if i ∈ S and j 6∈ S. But this means ij is saturated, which is impossible

as cij =∞ (which is why we made that choice).

So K is a vertex cover - what is more, it has size equal to the cut S's capacity: you can see

this by �rst noting all edges straddling the cut must be of capacity one, since the minimum cut has

�nite capacity. You may like to construct an example to see this. Hence:

the size of the maximum matching = the value of the maximum �ow = the capacity

of the minimum cut ≥ the size of the minimum vertex cover

and hence we are done.

Unusual Graph Transformations

The �nal application of graph theory which we will consider in this lecture is to a speci�c problem

which it is not obvious should be phrased in the language of graphs - or at least not in the way you

might expect. It is useful to see how problems can be gradually transformed into a format we know

how to deal with.

Problem 4.35 (Plane Scheduling). Given a set of �ights with origins, destinations, departure times

and arrival times, what is the minimum number of planes needed to make all the �ights?

The slightly misleading element of this problem is that physical intuition seems to demand that

nodes be the airports and edges the �ights, which is entirely unhelpful.

Instead, what we need is a graph encoding information about compatible �ights - that is, ones

which a single plane can make. In�uenced by the success of graph techniques on maximum matchings,

it seems a good idea to make nodes correspond to �ights, and edges to compatible �ights.

Solution. Construct a graph G = (V,E) where V is the set of �ights, and ij ∈ E i� the same plane

can make both �ight i and then �ight j (so i occurs before j).

78

Clearly, due to the time ordering, G contains no cycles. What we want to �nd is the minimum

number of directed paths that can cover all of the nodes in G (that is, so that every node lies in

some path).

The next stage in this solution is not at all immediately obvious. Let us recall the analogy we

drew above with compatibility in bipartite graphs. We are trying to match up as many pairs

of �ights as possible (in order to reduce the number of planes needed). So can we restate the

problem of making these `pairings' in a form that we have seen before? The answer is yes - we are

trying to match up �nishing times of earlier �ights with the start times of later �ights (recall the

problem of maximizing the number of events one person could attend in the greedy algorithms

lecture, on page 10). If we create a new graph to re�ect this, we can easily make it bipartite.

So we take G and form a new graph G′ by splitting each node i into two nodes i1 and i2. Then,

we draw the edge i1j2 if and only if there was originally a connecting edge, i.e. ij ∈ E.

Now a path in G corresponds to a sequence of edges

a1b2, b1c2, c1d2, · · ·

in the new graph G′. We want to �nd the minimum number of paths needed to cover G - that

is, we want to use as many edges of the form i1j2 as possible. But now G′ is clearly a bipartite

graph, and want we want to do is precisely to �nd a maximum matching in it! This we have all

the equipment we need for, so we are done.

Remark. Note that each time we add an edge to the matching, we decrease the number of planes

needed by 1, so the size of the matching is equal to

n− {the corresponding number of paths}

where n is the number of �ights. In particular, the size of a maximum matching is

n− {the minimum number of paths}

So by König's theorem, and the relationship between vertex covers and independent sets,

the size of a maximum matching = the size of a minimum vertex cover

= n− the size of a maximum independent set

Hence the minimum number of planes needed is the maximum number of �ights no two of which

can be made by the same plane - a very down-to-earth result to derive so abstractly!

79

Lecture 16: Minimum-Cost Flow

The �nal type of problem which we will consider is an important variation on the theme of the

network �ow problem.

4.4 Minimum-Cost Flow

Problem 4.36 (Assignment Problem). There are n workers and n jobs. Assigning worker i to job j

incurs a cost aij . Match workers to jobs such that the total cost is minimized.

We know how to rephrase matching problems like this in terms of network �ows: we form the

corresponding bipartite graph, and attach a source on one side and a sink on the other. In this case,

with unit capacities, we would be looking for some �ow of value n. This is obviously trivial with

this problem in the sense that all edges exist (although we could e�ectively have aij = ∞, instead of

actually removing the edge ij - then if we get a minimum cost matching with cost in�nity, we know

it is impossible to make a matching without these forbidden edges). Note that it is implicit that the

edges attached to the source and sink have cost 0.

Where this obviously di�ers is that it is advantageous to use some particular edges rather than

others, even with all other things being equal (note that if we were to look for a minimum cost �ow

of value 1, this is a shortest path problem - you may like to check this, noting that we can send

non-integer �ow along the edges too). Therefore, this is a special case of the following problem.

Problem 4.37. Given a network N , whose edges have a cost per unit �ow aij and an (integer) capacity

cij , �nd a minimum-cost �ow of a given value v.

There are actually many ways to solve this problem; the approach we shall adopt is to extend ideas

we have already seen.

If we were to use similar ideas to our solution for the maximum �ow problem, we would proceed

to �nd augmenting paths until we reach the target value v; the obvious way of doing this is greedy:

Idea: Find minimum-cost augmenting paths from s to t, to value v.

To be clear about what we mean by this:

De�nition 4.38. The cost of an augmenting path p is the sum of the costs of its edges. This

gives the net cost incurred in pushing one unit of �ow along P . Note that we can have edges of

negative cost, since these will necessarily arise when we introduce back edges.

It is reasonable to expect, however, that this alone might not be su�cient to guarantee �nding an

overall minimum cost �ow - that is, when we get a �ow of value v, we might not have one of minimum

cost.

It would therefore be useful to be able to improve the performance of a �ow of �xed value by �nding

routes along which we can alter �ow without changing the net �ow but changing the net cost. This

motivates the following de�nition.

80

De�nition 4.39. An augmenting cycle C is a (directed) cycle whose edges all have positive

capacity. The cost of C is the sum of the costs of its (directed) edges.

Clearly, we would improve our �ow if we could remove all negative-cost augmenting cycles by

augmenting along them, in much the same way as when we exploited back edges when �rst coming

up with the maximum �ow algorithms. As with the maximum �ow arguments, this only works if our

repeated augmentations converge to the optimum solution.

Theorem 4.40. A �ow f of value v has minimum cost (among all �ows of the same value) if and

only if there is no negative-cost cycle in the residual graph Nf .

Proof.

=⇒ : Suppose Nf has a negative-cost cycle. Then we can augment f around this cycle to get

a cheaper �ow of the same value.

⇐=: Suppose f is not a minimum-cost �ow. Then there is a cheaper �ow g of the same value

v. The �ow g−f has value 0, and hence can be decomposed into a union of augmenting

cycles, by Lemma 4.30, and obviously at least one must have negative cost, since g − f
is of negative cost. Also, the cycles must be augmenting in f because all of the edges

exist in Nf (i.e. they have some capacity remaining).

This looks promising. In fact, there is another result we have as a consequence:

Theorem 4.41. Let f be a minimum-cost �ow of value v, and let P be a minimum-cost augmenting

path in Nf of value δ. Then augmenting f along P by δ gives a minimum-cost �ow g of value v+ δ.

Proof. Suppose this did not hold. Then by the previous theorem, g admits a negative-cost cycle C.

Since f admitted no negative-cost cycles, there must be some edge ij ∈ P on our path with ji ∈ C.
Then

(P\ {ij}) ∪ (C\ {ji})

or some subset thereof is a cheaper augmenting path than P , which is a contradiction.

Hence we have the following solution, called the successive shortest paths algorithm, which is very

much like a generalized Ford-Fulkerson algorithm:

Solution. Start with f = 0. Keep �nding negative-cost augmenting cycles, augmenting along them,

until there are no more. At the end, we have a minimum-cost zero �ow. Then, by repeatedly

81

�nding minimum-cost augmenting paths s t (using Bellman-Ford), we will either run out of

augmenting paths (in which case there are no �ows of value v at all) or we will be able to reach

v (since we do not have to saturate an edge when we augment!) and hence we are done.

Complexity : Ignoring the �rst stage (i.e. assuming there are no negative cost cycles with respect

to aij , i.e. that the zero �ow is minimum cost, which is often a reasonable assumption) the time

complexity - recalling that v is an integer - is

O (nmv)

because at most v augmenting paths must be found as we always augment by at least value 1,

and as we know from analyzing Bellman-Ford we can do this in O (nm) time.

There are alternative approaches to this problem.

For example, the cycle-cancelling algorithm uses the �rst theorem only, and works by �rst establish-

ing any feasible solution of the desired value, and then �nding negative cycles. Note that if we assume

the zero �ow is minimum cost, this unnecessarily complicates matters (compared to the successive

shortest path algorithm). There is a variation on the cycle-cancelling algorithm called the minimum

mean(-value) cycle cancelling algorithm.

There is also a primal-dual algorithm called cost-scaling which is similar to our successive shortest

path approach, which augments along all shortest paths simultaneously. This generalizes the push-

relabel scheme of maximum �ow algorithms.

This problem can also be solved via techniques in linear programming.

82

	List of Lectures
	1 Basics
	1.1 Recursion
	1.2 Dynamic Programming

	2 Graph Algorithms
	2.1 Search Algorithms
	2.2 Shortest Path Algorithms
	2.3 Minimum Spanning Trees

	3 Greedy Algorithms
	4 Matchings and Network Flow
	4.1 The Stable MarriageThe problem was named in the days before gay marriage was something that would ever cross anyone's minds; a progressive variant is mentioned at the end of this lecture! Problem
	4.2 Maximum Matching in Bipartite Graphs
	4.3 Maximum Flow
	4.4 Minimum-Cost Flow

